
V GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. First day. 8 form. Solutions.
1. (A.Blinkov, Y.Blinkov) Minor base BC of trapezoid ABCD is equal to side AB, and

diagonal AC is equal to base AD. The line passing through B and parallel to AC intersects
line DC in point M . Prove that AM is the bisector of angle BAC.
First solution.We have ∠BMC = ∠ACD = ∠CDA = ∠BCM (first and third equality
follow from parallelism of BM and AC, BC and AD; second equality follows from AC =
AD). Thus, BM = BC = AB, and ∠BAM = ∠BMA = ∠MAC (fig.8.1).
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Fig.8.1
Second solution. Let point P lie on the extension of side AB (beyond point B), and
point K lie on the extension of diagonal AC (beyond point C). Then ∠MCK = ∠ACD =
∠ADC = ∠BCM , i.e CM is the bisector of angle BCK. Since AC bisects angle BAD
and BM ‖ AC, then BM is the bisector of angle PBC. Thus M is the common point of
two external bisectors of triangle ABC, therefore AM is the bisector of angle BAC.

2. (A.Blinkov) A cyclic quadrilateral is divided into four quadrilaterals by two lines passing
through its inner point. Three of these quadrilaterals are cyclic with equal circumradii.
Prove that the fourth part also is cyclic quadrilateral and its circumradius is the same.
Solution. Let the parts adjacent to vertices A, B, C of cyclic quadrilateral ABCD be
cyclic quadrilaterals. Since angles A and C are opposite to equal angles in point of division
L we have ∠A = ∠C = 90◦. So two dividing lines are perpendicular. Thus angle B is
also right and ABCD is a rectangle. So the fourth quadrilateral is cyclic. Now the angles
corresponding to arcs AL, BL, CL are equal, and since the radii of these circles also are
equal, we have AL = BL = CL. So L is the center of the rectangle and the fourth circle
has the same radius.

3. (A.Akopjan, K.Savenkov) Let AHa and BHb be the altitudes of triangle ABC. Points
P and Q are the projections of Ha to AB and AC. Prove that line PQ bisects segment
HaHb.
Solution. Let CHc be the third altitude of ABC. Then ∠HaHcB = ∠HbHcA = ∠C
because quadrilaterals CBHcHb and CAHcHa are cyclic. So the reflection of Ha in AB
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lies on HbHc. Similarly the reflection of Ha in AC also lies on this line. Thus P and Q lie
on the medial line of triangle HaHbHc (fig.8.3).
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Fig.8.3

4. (N.Beluhov) Given is 4ABC such that ∠A = 57◦, ∠B = 61◦ and ∠C = 62◦. Which
segment is longer: the angle bisector through A or the median through B?
First solution. Let K be the midpoint of arc ABC in the circumcircle of ABC. Let also
the circumcenter of the triangle be O, and AL and BM be the angle bisector and the
median. Define AL∩CK = N and let AH be an altitude in 4AKC. Since ∠A < ∠C, B
lies inside arc KC, therefore N lies inside segment AL and AL > AN > AH. Moreover
AH > KM as altitudes from a smaller and a greater angle in 4AKC. Finally, KM =
MO + OK = MO + OB > MB, and the problem is solved: the angle bisector is longer
(fig.8.4).
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Second solution. Since AB > BC, we have ∠MBC > 30◦. Construct the altitude AH
and the perpendicular MK from M to BC. We have AL > AH = 2MK > BM , because
sin ∠BMK = MK

BM
> 1

2
.

Third solution. (K.Ivanov, Moscow). Consider regular triangle ABC ′. Since ray BC ′

lies inside angle ABC, we have that the bisector of angle A is longer that the altitude of
regular triangle. In the other hand let M , N be the midpoints of AC and AC ′ respectively.
Since ray AC lies inside angle C ′AB, we have ∠BMN > ∠BMA. But ∠BMA > 90◦

because AB > BC. Thus BN > BM and the bisector of angle A is longer that the
median from B.
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V GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. Second day. 8 form. Solutions.

5. (V.Protasov) Given triangle ABC. Point M is the projection of vertex B to bisector
of angle C. K is the touching point of the incircle with side BC. Find angle MKB if
∠BAC = α

Solution. Let I be the incenter of ABC. Then quadrilateral BMIK is cyclic because
∠BMI = ∠BKI = 90◦ (fig.8.5). Thus ∠MKB = ∠MIB = ∠IBC + ∠ICB = \B+\C

2
=

90◦ − α
2
.
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6. (S.Markelov) Can four equal polygons be placed on the plane in such a way that any two
of them don't have common interior points, but have a common boundary segment?
Solution. Yes, see fig.8.6.

Fig.8.6

7. (D.Prokopenko) Let s be the circumcircle of triangle ABC, L and W be common points
of angle's A bisector with side BC and s respectively, O be the circumcenter of triangle
ACL. Restore triangle ABC, if circle s and points W and O are given.
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Solution. Let O′ be the circumcenter of ABC. Then lines O′O and O′W are perpendicular
to sides AC and BC, so the directions of these sides are known. Also ∠COL = 2∠CAL =
2∠LCW , thus ∠OCW = 90◦ (fig.8.7). Therefore C is the common point of s and the
circle with diameter OW .
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8. (N.Beluhov) A triangle ABC is given, in which the segment BC touches the incircle
and the corresponding excircle in points M and N . If ∠BAC = 2∠MAN , show that
BC = 2MN .
Solution. We may assume that AB > AC, and therefore the points B, N, M,C lie on
the line in this order. We will use the following well-known
Lemma. Let K be the midpoint of AB, and I and J be the incenter and the excenter
opposite to A. Then AN ‖ IK and AM ‖ JK.
Now the lemma shows that the original condition is equivalent to ∠IKJ = 180 − α/2.
We will show first that if BC = 2MN then this is true. In this case, since the midpoints
of BC and MN coincide, we have that M and N are midpoints of KC and KB, and
therefore, IM and NJ are perpendicular bisectors of KC and KB. Thus triangles IKC
and JKB are isosceles, and ∠JKB = 90−β/2,∠IKC = γ/2, yielding the claim (fig.8.8).
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Now, consider the circle (BICJ). Given α, we see that IJ is determined as a diameter,
and BC as an arc constituting angle 90+α/2. When the chord BC runs along the circle,
its midpoint K runs along a smaller circle. In the same time the locus of the points K ′
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such that ∠IKJ = 180 − α/2, consists of two arcs of circles with endpoints I and J .
Obviously, these loci intersect in four points, symmetric to each other with respect to IJ
and its perpendicular bisector, thus corresponding to four equal quadrilaterals BICJ . So
this quadrilateral is completely determined by the condition ∠IKJ = 180−α/2. But the
one obtained when BC = 2MN satisfies this condition, hence the claim.
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V GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. First day. 9 form. Solutions.
1. (A.Blinkov, Y.Blinkov) The midpoint of triangle's side and the base of the altitude to

this side are symmetric wrt the touching point of this side with the incircle. Prove that
this side equals one third of triangle's perimeter
First solution. Let a, b be the lengths of two sides, and the altitude divide the third
side into segments with lengths x, y (if the base of the altitude lies out of the side then
one of these lengths is negative). By the Pythagorean theorem x2 − y2 = a2 − b2. But
the touching point divides the side into segments with lengths p − a and p − b. So the
condition of the problem is equivalent to x− y = 2(a− b). Dividing the first equality by
the second one we obtain that x + y = (a + b)/2 = 2p/3.
Second solution. Let c be the side in question, then r/rc = (p − c)/p. Let K and P
be the touching points of this side with the incircle and the excircle, I and Q be the
centers of these circles. It is known that the midpoint of altitude CH lies on line IP .
Using similarity of two pairs of triangles we obtain that r = h/3, rc = h (fig.9.1). From
the first equality we obtain the assertion of the problem.
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2. (O.Musin) Given a convex quadrilateral ABCD. Let Ra, Rb, Rc and Rd be the circumradii
of triangles DAB, ABC, BCD, CDA. Prove that inequality Ra < Rb < Rc < Rd is
equivalent to

180◦ − ∠CDB < ∠CAB < ∠CDB.
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Solution. Let the angles of the quadrilateral satisfy the given inequality. Then sin ∠CAB >
sin ∠CDB and so Rb < Rc. Since angle CDB is obtuse, this implies that point A lies
out of the circle CDB, thus ∠CAD < ∠CBD. As these angles are both acute, we have
sin ∠CAD < sin ∠CBD and Rc < Rd. Moreover ∠ACB < ∠ADB < 90◦, so Ra < Rb.
Conversely, from Rb < Rc it follows that angle CAB lies between angles CDB and
180◦ − ∠CDB. If angle CDB is acute, we have ∠ABD < ∠ACD, and since Ra < Rd

then ∠ABD > 180◦−∠ACD. But in this case we obtain by repeating previous argument
that Rb < Ra < Rd < Rc.

3. (I.Bogdanov) Quadrilateral ABCD is circumscribed, rays BA and CD intersect in point
E, rays BC and AD intersect in point F . The incircle of the triangle formed by lines AB,
CD and the bisector of angle B, touches AB in point K, and the incircle of the triangle
formed by lines AD, BC and the bisector of angle B, touches BC in point L. Prove that
lines KL, AC and EF concur.
Solution. Let the incircle of ABCD touch sides AB and BC in points U and V . Then
we have

(EB; KU) =
EK

BK
:
EU

BU
=

ctg \BEC
2

ctg \B
4

:
ctg \BEC

2

ctg \B
2

= (FB; LV ).

This means that lines KL, EF , UV concur. Similarly lines AC, EF , UV concur (fig.9.3).
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Fig.9.3

4. (N.Beluhov) Given regular 17-gon A1 . . . A17. Prove that two triangles formed by lines
A1A4, A2A10, A13A14 and A2A3, A4A6 A14A15 are equal.
Solution. Firstly note that A1A4 ‖ A2A3, A2A10 ‖ A14A15, A13A14 ‖ A4A6. So we have
to prove that given triangles are central symmetric.
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Let A, B, C, D, E, F be the midpoints of A1A2, A3A4, A4A13, A6A14, A10A14, A15A2

respectively. Lines BC, DE, FA as medial lines of three triangles are parallel to A3A13 ‖
A6A10 ‖ A1A15. Lines AD, BE, CF as axes of three isosceles trapezoids concur at the
center of 17-gon. By dual Pappus theorem AB, CD, EF concur at some point P (fig.9.4).
But these lines are the medial lines of three strips formed by parallel sidelines of given
triangles. Therefore these triangles are symmetric wrt P .
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V GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. Second day. 9 form. Solutions.

5. (B.Frenkin) Let n points lie on the circle. Exactly half of triangles formed by these points
are acute-angled. Find all possible n.
Answer. n = 4 or n = 5.
Solution. It is evident that n > 3. Consider any quadrilateral formed by marked points.
If the center of the circle lies inside this quadrilateral but not on its diagonal (call such
quadrilateral "good"), then exactly two of four triangles formed by the vertices of the
quadrilateral are acute-angled. In other cases less than two triangles are acute-angled.
Therefore the condition of the problem is true only when all quadrilaterals are good. If
n = 4 or n = 5 this is possible (consider for example the vertices of a regular pentagon).
Now let n > 5. Consider one of marked points A and the diameter AA′. If point A′ also
is marked then the quadrilateral formed by A, A′ and any two of remaining points isn't
good. Otherwise there exist three marked points lying on the same side from AA′. The
quadrilateral formed by these points and A isn't good.

6. (A.Akopjan) Given triangle ABC such that AB − BC = AC√
2
. Let M be the midpoint of

AC, and N be the base of the bisector from B. Prove that

∠BMC + ∠BNC = 90◦.

Solution. Let C ′ be the reflection of C in BN . Then AC ′ = AB −BC and by condition
AM/AC ′ = AC ′/AC. Thus triangles AC ′M and ACC ′ are similar and ∠AC ′M =
∠C ′CA = 90◦ − ∠BNC. Furthermore using the formula for a median we obtain that
BM2 = AB ·BC, so BC ′/BM = BM/BA. Therefore triangles BC ′M and BMA are also
similar and ∠BMC ′ = ∠BAM . Finally ∠BMC = 180◦ −∠BMC − ∠C ′MA = ∠MC ′A
q.e.d. (fig.9.6).
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7. (M.Volchkevich) Given two intersecting circles with centers O1, O2. Construct the circle
touching one of them externally and the second one internally such that the distance from
its center to O1O2 is maximal.
Solution. Let O, r be the center and the radius of some circle touching the two given;
r1, r2 be the radii of the given circles. Then OO1 = r1− r, OO2 = r2 + r, or OO1 = r1 + r,
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OO2 = r2 − r, and in both cases OO1 + OO2 = r1 + r2. Therefore we must find the
point satisfying this condition with maximal distance from line O1O2. It is known that
the isosceles triangle has the minimal perimeter among all triangles with given base and
altitude. Therefore the isosceles triangle has also the maximal altitude among all triangles
with given side and the sum of two other sides. From this we obtain that the center of the
required circle lies on equal distances (r1 + r2)/2 from points O1 and O2, and its radius
is equal to |r1 − r2|/2.

8. (C.Pohoata, A.Zaslavsky) Given cyclic quadrilateral ABCD. Four circles each touching
its diagonals and the circumcircle internally are equal. Is ABCD a square?
Answer. Yes.
First solution. Let AC ∩ BD = P , and let the incircles of the circular triangles
ABP, BCP, CDP, DAP touch the circumcircle of ABCD in K, L,M,N .
Consider the segment ABC. When a variable point X moves along the arc ABC from A
to C, the radius of the circle inscribed in the segment and touching the arc in X changes
as follows: it increases until X becomes the midpoint of the arc, and then decreases.
Therefore, each value of radius is reached in exactly two, symmetrically situated positions
of X.
Therefore ^ AK =^ LC. Analogously ^ AN =^ MC. So ^ NK =^ LM . Analogously
^ KL =^ MN . Now ^ NL =^ NK+ ^ KL = 180◦ i.e. NL is a diameter.
Analogously KM is also a diameter.
Now symmetry with respect to O sends the pair of circles touching the circumcircle in M
and N in the analogous pair touching it in K and L. So the same symmetry sends the
common external tangent of the first pair in that of the second namely it sends AC in
CA. Therefore AC is a diameter and similarly, BD is a diameter.
So ABCD is a rectangle. Its diagonals divide the circumcircle into four sectors with equal
radii of incircles. Therefore these sectors are also equal and ABCD is square.
Second solution. Use the Thebault theorem: let point M lie on side AC of triangle
ABC and two circles touch ray MB, line AC and internally the circumcircle of ABC.
Then two centers of these circles and the incenter of ABC are collinear.
Applying the Thebault theorem to triangles ABC, BCD, CDA, DAB and the common
point of diagonals we obtain that the inradii of these four triangles are equal. Calculating
the areas of triangles as product of semiperimeter by inradius and finding the area of
quadrilateral in two ways we obtain that AC = BD, so ABCD is an isosceles trapezoid.
Suppose that AD, BC are its bases and AD > BC. Then SABD/SABC = AD/BC >
(AD + BD + AB)/(BC + AB + AC), and the inradii of these triangles can't be equal.
Thus ABCD is a rectangle. As in the first solution ABCD must be a square.
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V GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. First day. 10 form. Solutions.
1. (D.Shvetsov) Let a, b, c be the lengths of some triangle's sides; p, r be the semiperimeter

and the inradius of triangle. Prove an inequality
√

ab(p− c)

p
+

√
ca(p− b)

p
+

√
bc(p− a)

p
≥ 6r.

Solution. By Cauchi inequality the left part isn't less than

3
3

√√√√abc

p

√
(p− a)(p− b)(p− c)

p
= 3

3
√

4r2R.

As R ≥ 2r we obtain the demanded inequality.

2. (F.Nilov) Given quadrilateral ABCD. Its sidelines AB and CD intersect in point K. Its
diagonals intersect in point L. It is known that line KL pass through the centroid of
ABCD. Prove that ABCD is trapezoid.
Solution. Suppose that lines AD and BC intersect in point M . Let X, Y be the common
points of these lines with line KL. Then (AD; MX) = (BC; MY ) = 1. Therefore relations
AX/XD and BY/Y C are both greater or are both less than 1, and segment XY doesn't
intersect the segment between the midpoints of AD and BC. As this last segment contains
the centroid of ABCD, the condition of problem is true only when AD ‖ BC.

3. (A.Zaslavsky, A.Akopjan) The cirumradius and the inradius of triangle ABC are equal to
R and r; O, I are the centers of respective circles. External bisector of angle C intersect
AB in point P . Point Q is the projection of P to line OI. Find distance OQ.
Solution. Let A′, B′, C ′ be the excenters of ABC. Then I is the orthocenter of triangle
A′B′C ′, A, B, C are the bases of its altitudes and so the circumcircle of ABC is the
Euler circle of A′B′C ′. Thus the circumradius of A′B′C ′ is 2R, and its circumcenter O′

is the reflection of I in O. Furthermore points A, B, A′, B′ lie on the circle. Line AB is
the common chord of this circle and the circumcircle of ABC, and the external bisector
of C is the common chord of this circle and the circumcircle of A′B′C ′. So P is the
radical center of three circles, and line PQ is the radical axis of circles ABC and A′B′C ′

(fig.10.3). Therefore OQ2 − R2 = (OQ + OO′)2 − 4R2. As OO′ = OI =
√

R2 − 2Rr, we
have OQ = R(R + r)/

√
R2 − 2Rr.

12



A
B

C

P

Q

A′

B′

C ′

I

O

O′

Fig.10.3

4. (C.Pohoata) Three parallel lines da, db, dc pass through the vertex of triangle ABC. The
reflections of da, db, dc in BC, CA, AB respectively form triangle XY Z. Find the locus
of incenters of such triangles.
First solution. When da, db, dc rotate around the vertices the symmetric lines rotate
with the same velocity around the reflections of the vertices in opposite sidelines. Thus,
firstly, the angles of XY Z don't depend on da, db, dc, so all these triangles are similar, and
secondly, points X, Y , Z move with equal angle velocity along three circles. Therefore
the incenter also moves along some circles and it is sufficient to find three points of this
circle.
Take da, db coinciding with line AB. Let A′, B′ be the reflections of A, B in opposite
sidelines. Then Z is the common point of lines AB′ and BA′, Y and X are the common
points of these lines with the line parallel to AB and lying twice as far from C. Note that
C and circumcenter O of ABC lie on equal distances from AB′ and BA′, so the bisector
of angle XZY coincides with line CO. Also it is easy to see that the bisectors of angles
ZXY and ZY X are perpendicular to AC and BC respectively.
Consider the projections of O and of the incenter of XY Z to line AC. The projection
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of O is the midpoint of AC. Also it is the projection of the common point of AB′ and
dc, because these two lines form equal angles with AC. Thus the projection of X and
the incenter of XY Z is symmetric to the midpoint of AC wrt A (fig.10.4). Therefore the
distance from the incenter to O is twice as large as the circumradius of ABC. When da,
db, dc are parallel to other sidelines of ABC, we obtain the same result. So the demanded
locus is the circle with center O and radius twice as large as the circumradius of ABC .
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Fig.10.4
Second solution. As in the previous solution we obtain that when the direction of
the lines d changes with a constant angular speed, so do the directions of XY, Y Z, ZX.
Therefore, the vertex X of triangle XY Z traces a circle with chord B′C ′, and the angle
bisector of ∠Y XZ rotates around the midpoint Wa of the arc ^ B′C ′ with constant
angular speed, too. So do the angle bisectors of ∠Y and ∠Z around the midpoints Wb,
Wc of the corresponding arcs ^ A′C ′ and ^ A′B′.
Therefore, their intersection I traces in the same time the circumcircles of triangles
IWaWb, IWbWc and IWcWa. So, these three circumcircles do in fact coincide, and we
are left to describe the circumcircle of triangle WaWbWc.
We will show that all the points Wa, Wb, Wc are of distance 2R from O. Indeed, take
Wa. Let BHb, CHc be the altitudes in triangle ABC, Oa be the circumcenter of triangle
AHbHc, O′ be the reflection of O in BC, and Ma be the midpoint of BC. The figures
BCO′, HbHcOa and B′C ′Wa are similar, and the figures BHbB1 and CHcC1 are also
similar, therefore they are similar to O′OaWa, and MaOa is a mid-segment in triangle
O′OWa. Since MaOa is a diameter of the Euler circle, and thus equals R, the claim
follows.
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V GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. Second day. 10 form. Solutions.

5. (D.Prokopenko) Rhombus CKLN is inscribed into triangle ABC in such way that point
L lies on side AB, point N lies on side AC, point K lies on side BC. O1, O2 and O are
the circumcenters of triangles ACL, BCL and ABC respectively. Let P be the common
point of circles ANL and BKL, distinct from L. Prove that points O1, O2, O and P are
concyclic.
Solution. It is evident that L is the base of the bisector of angle C, and lines LN , LK
are parallel to sides BC, AC. Thus ∠AO1L = 2∠ACL = ∠C = ∠ANL, so point O1 lies
on the circumcircle of triangle ANL and coincides with the midpoint of arc ANL. Thus,
∠O1PL = ∠APL+∠O1PA = ∠C + \A+\B

2
= π+\C

2
. Similarly ∠O2Pl = π+\C

2
. Therefore

∠O1PO2 = π − ∠C. But angle O1OO2 is also equal to π − ∠C, because lines OO1, OO2

are medial perpendiculars to AC and BC (fig.10.5).
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Fig.10.5

6. (A.Zaslavsky) Let M , I be the centroid and the incenter of triangle ABC, A1 and B1

be the touching points of the incircle with sides BC and AC, G be the common point of
lines AA1 and BB1. Prove that angle CGI is right if and only if GM ‖ AB.
First solution. Let C1 be the touching point of incircle with side AB, C2 be the second
common point of incircle with CC1. Then G lies on segment CC1. As there exists central
projection transforming the incircle to some circle and G to the center of this circle,
then the cross-ratio (CG; C1C2) is the same for any triangle and regular triangle. So this
cross-ratio is equal to 3. Therefore we have the chain of equivalent assertions:
- ∠CGI = 90◦;
- G is the midpoint of C1C2;
- CC1 = 3CC2;
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- CC1 = 3GC1;
- GM ‖ AB.
Second solution. Let AC1 = x,BA1 = y, CB1 = z. By Menelaus' theorem,

y + x

x
.
GC1

GC
.
z

y
= 1 ⇒ GC1

GC
= k =

xy

z(x + y)
=

m

z
,

where m = xy
x+y

.
Now,

∠IGC = 90◦ ⇔ CI2 − r2 = GC2 −GC2
1 ⇔ z2 =

= CC2
1(

1

(1 + k)2
− k2

(1 + k)2
) = CC2

1(
1− k

1 + k
) = CC2

1(
z −m

z + m
).

But, by Stewart's theorem,

CC2
1 =

x

x + y
(z + y)2 +

y

x + y
(z + x)2 − xy = z(z + 4m).

Then, these two equations yield

z2 = z(z + 4m)(
z −m

z + m
) ⇔ z(z + m) = (z + 4m)(z −m) ⇔

⇔ 2zm = 4m2 ⇔ z = 2m ⇔ k =
1

2
,

as needed.

7. (A.Glazyrin) Given points O, A1, A2 ... An on the plane. For any two of these points the
square of distance between them is natural number. Prove that there exist two vectors ~x
and ~y, such that for any point Ai

~OAi = k~x+ l~y, where k and l are some integer numbers.
Solution. By condition we obtain that for all i, j the product ( ~OAi, ~OAj) is a half of
an integer number. Thus for any integer m1, . . . , mn the square of vector m1

~OA1 + · · ·+
mn

~OAn is a natural number. Consider all points which are the ends of such vectors. Let
X be the nearest to O of these points, Y be the nearest to O of considered points not
lying on line OX. Divide the plane into parallelograms formed by vectors ~x = ~OX and
~y = ~OY . By definition of points X, Y all marked points are vertices of parallelograms,
therefore ~x, ~y are demanded vectors.

8. (B.Frenkin) Can the regular octahedron be inscribed into regular dodecahedron in such
way that all vertices of octahedron be the vertices of dodecahedron?
Answer. No.
Solution. If an octahedron is inscribed into a dodecahedron then their circumspheres
coincide. Therefore two opposite vertices of the octahedron are opposite vertices of the
dodecahedron, and all other vertices of the octahedrons are equidistant from these two
vertices. But the dodecahedron has no vertices equidistant from two opposite vertices.
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