
V GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

THE CORRESPONDENCE ROUND. SOLUTIONS

1. (D.Prokopenko) (8) Points B1 and B2 lie on ray AM , and points C1 and C2 lie on ray
AK. The circle with center O is inscribed into triangles AB1C1 and AB2C2. Prove that
the angles B1OB2 and C1OC2 are equal.

Solution. Let D be the common point of segments B1C1 and B2C2 (Fig.1). Then by
theorem on exterior angles of a triangle, we have ∠B1OB2 = ∠AOB2 − ∠AOB1 =
∠AB1O − ∠AB2O = (∠AB1C1 − ∠AB2C2)/2 = ∠B1DB2/2. Similarly ∠C1OC2 =
∠C1DC2/2, thus these angles are equal.

A
B1 B2

C1

C2

O
D

M

K

Fig.1

2. (B.Frenkin) (8) Given non-isosceles triangle ABC. Consider three segments passing through
different vertices of this triangle and bisecting its perimeter. Are the lengths of these
segments certainly different?

Answer. Yes.

Solution. Suppose for example that segments AA′ and BB′ are equal. Since the perimeters
of triangles AA′B and AA′C are equal, we have BA′ = (AB + BC + CA)/2 − AB.
Similarly AB′ = (AB + BC + CA)/2 − AB, and so triangles ABA′ и BAB′ are equal.
Thus ∠A = ∠B, but this is impossible because triangle ABC is non-isosceles.

3. (D.Shnol) (8) The bisectors of trapezoid’s angles form a quadrilateral with perpendicular
diagonals. Prove that this trapezoid is isosceles.

Solution. Let KLMN be the quadrilateral formed by the bisectors (Fig. 3). Since AK,
BK are the bisectors of adjacent trapezoid’s angles, we have ∠LKN = 90◦. Similarly
∠LMN = 90◦. So LK2 +KN2 = LM2 +MN2. But by perpendicularity of the diagonals,
KL2 +MN2 = KN2 +LM2. These two equalities yield that KL = LM and MN = NK,
thus ∠NKM = ∠NMK. But points K, M as common points of bisectors of adjacent
angles, lie on the midline of the trapezoid, i.e. KM ‖ AD. So ∠CAD = ∠BDA and the
trapezoid is isosceles.
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4. (D.Prokopenko) (8–9) Let P and Q be the common points of two circles. The ray with
origin Q reflects from the first circle in points A1, A2, . . . according to the rule “the angle
of incidence is equal to the angle of reflection”. Another ray with origin Q reflects from the
second circle in the points B1, B2, . . . in the same manner. Points A1, B1 and P occurred
to be collinear. Prove that all lines AiBi pass through P .

Solution. When the rays reflect from the circles, we have QA1 = A1A2 = A2A3 = · · ·
and QB1 = B1B2 = B2B3 = · · · . So ∠(PQ,PA1) = ∠(PA1, PA2) = ∠(PA2, PA3) = · · ·
and ∠(PQ,PB1) = ∠(PB1, PB2) = ∠(PB2, PB3) = · · · (for oriented angles). Also, since
points A1, B1, P are collinear, we have ∠(PQ,PA1) = ∠(PQ, PB1). Thus for any i we
have ∠(PAi−1, PAi) = ∠(PBi−1, PBi), and by induction Ai, Bi, P are collinear.

5. (D.Shnol) (8–9) Given triangle ABC. Point O is the center of the excircle touching the
side BC. Point O1 is the reflection of O in BC. Determine angle A if O1 lies on the
circumcircle of ABC.

Solution. The condition yields that ∠BOC = ∠BO1C = ∠A. On the other hand,
∠BOC = 180◦ − (180◦ − ∠B)/2− (180◦ − ∠C)/2 = (180◦ − ∠A)/2. So ∠A = 60◦.

6. (B.Frenkin) (8–9) Find the locus of excenters of right triangles with given hypotenuse.

Solution. Let ABC be a right triangle with hypotenuse AB, and Ia, Ib, Ic be its excenters
(Fig. 6). Then ∠AIcB = ∠AIaB = ∠AIbB = 45◦, and points Ia, Ib lie on the same side
from line AB, Ic on the other side. So these three points lie on two circles c1, c2 passing
through A, B, such that their arc AB is equal to 90◦. When C runs a semicircle with
diameter AB then each excenter runs a quarter of the circle.
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Namely, Ia runs the arc between B and the meet of the circle with l; Ib runs the arc
between A and the meet of the circle with k; Ic runs the arc between the meets of the
circle with k and l. When C runs the whole circle with diameter AB except points A,B,
the excentres run the required locus, namely the arcs of c1, c2, lying outside the circle
with diameter AB, except their ends A, B and their meets with k, l.

7. (V.Protasov) (8–9) Given triangle ABC. Points M , N are the projections of B and C to
the bisectors of angles C and B respectively. Prove that line MN intersects sides AC and
AB in their points of contact with the incircle of ABC.

Solution. Let I be the incenter of ABC, P be the common point of MN and AC (Fig.
7). Points M , N lie on the circle with diameter BC, so ∠MNB = ∠MCB = ∠ACI.
Hence C, I, P , N are concyclic and ∠CPI = ∠CNI = 90◦. Thus, P is the touching
point of AC with the incircle. For side AB the proof is similar.
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8. (S.Markelov) (8–10) Some polygon can be divided into two equal parts by three different
ways. Is it certainly valid that this polygon has an axis or a center of symmetry?

Answer. No, see Fig.8.

Fig.8

9. (V.A.Yasinsky) (8–11) Given n points on the plane, which are the vertices of a convex
polygon, n > 3. There exist k regular triangles with the side equal to 1 and the vertices
at the given points.

a) Prove that k < 2
3
n.

b) Construct the configuration with k > 0, 666n.

Solution. a) For any given point there exists a line passing through this point, such that
all other given points lie on the same side from this line. This enables us to choose among
all triangles having this point as a vertex, two "extreme"triangles (maybe coinciding),
"left"and ’right’. We will call these two triangles "attached"to the given vertex.

Lemma. Each triangle is attached at least three times.
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Proof. Suppose that triangle ABC isn’t "extremely left"for vertex C and isn’t "extremely
right"for vertex B (Fig.9).

BC

AB1 C1

Fig.9

Then arcs AB1 and AC1 contain some of given points. But these points and A, B, C can’t
be vertices of a convex polygon. So ABC is attached by one of two indicated ways, i.e.,
it is "extremely left"for C or "extremely right"for B. Similarly it is "extremely left"for
A or "extremely right"for C. Also it is "extremely left"for B or "extremely right"for A.
Hence ABC is attached at least three times as required.

Suppose now that for n given points there exist k unit triangles. Since for any point
there exist at most two attached triangles, 2n is the maximum number of attachments.
Since each unit triangle is attached at least three times, 3k is the minimum number of
attachments. Thus 3k ≤ 2n and k ≤ 2

3
n.

b) Consider the rhombus formed by two triangles. Rotating it around its obtuse-angled
vertex we obtain m rhombuses.

If all rotation angles are less than π/3, then all vertices of obtained rhombuses form a
convex polygon. Also we have n = 3m + 1, k = 2m, and for m sufficiently great we have
k > 0, 666n.

10. (F.Ivlev) (9) Let ABC be an acute triangle, CC1 its bisector, O its circumcenter. The
perpendicular from C to AB meets line OC1 in a point lying on the circumcircle of AOB.
Determine angle C.

Solution. Let D be the common point of OC1 and the perpendicular from C to AB.
Since D lies on circle AOB and AO = OB, we have ∠ADC1 = ∠BDC1. So AD/BD =
AC1/BC1 = AC/BC. On the other hand, CD ⊥ AB implies AC2 + BD2 = AD2 + BC2.
From these two relations AC = AD, i.e., D is the reflection of C in AB. But then CC1

intersects the medial perpendicular of AB in the point symmetric to O (Fig.10). Since the
medial perpendicular and the bisector meet on the circumcircle, AB bisects perpendicular
radius. So ∠C = 60◦.
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11. (A.Blinkov) (9) Given quadrilateral ABCD. The circumcircle of ABC is tangent to side
CD, and the circumcircle of ACD is tangent to side AB. Prove that the length of diagonal
AC is less than the distance between the midpoints of AB and CD.

Solution. The condition implies ∠BAC + ∠BCD = ∠ACD + ∠BAD = 180◦. Thus
∠BCA = ∠CAD, i.e. AD ‖ BC and the segment between the midpoints of AB and CD
is the medial line of the trapezoid and equals (AD + BC)/2. Also ∠ACD = ∠ABC and
∠BAC = ∠CDA, so that triangles ABC and DCA are similar. Thus AC2 = AD · BC
and the assertion of the problem follows from Cauchi inequality.

12. (D.Prokopenko) (9–10) Let CL be a bisector of triangle ABC. Points A1 and B1 are the
reflections of A and B in CL; points A2 and B2 are the reflections of A and B in L. Let
O1 and O2 be the circumcenters of triangles AB1B2 and BA1A2 respectively. Prove that
angles O1CA and O2CB are equal.

Solution. The condition implies CB1/CA = CB/CA = BL/LA = B2L/AL, i.e., B1B2 ‖
CL. Similarly A1A2 ‖ CL. So ∠AB1B2 = ∠BA1A2 = ∠C/2. The reflection in CL
transforms points B and A1 to B1 and A. Also it transforms A2 to some point A′. We
obtain ∠A′AB2 + ∠A′B1B2 = ∠A + ∠B + 2∠C/2 = 180◦. Thus quadrilateral AA′B1B2

is cyclic and points O1, O2 are symmetric wrt CL (Fig.12).
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13. (A.Zaslavsky) (9–10) In triangle ABC, one has marked the incenter, the foot of altitude
from vertex C and the center of the excircle tangent to side AB. After this, the triangle
was erased. Restore it.

Solution. Incenter I and excenter Ic lie on the bisector CC ′ of angle C. If r and rc are
the inradius and the exradius then CI/CIc = C ′I/C ′Ic = r/rc. So for any point X lying
on the circle with diameter CC ′, the ratio XI/XIc is the same. As the foot H of altitude
to AB lies on this circle, we have HI/HIc = CI/C/Ic = C ′I/C ′Ic, i.e., HC ′ and HC are
the bisectors of angle IHIc (Fig.13). Constructing these bisectors, we restore point C
and line AB. As ∠IAIc = ∠IBIc = 90◦, points A, B lie on the circle with diameter IIc.
Constructing this circle and its common points with line AB, we restore the triangle.
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14. (V.Protasov) (9–10) Given triangle ABC of area 1. Let BM be the perpendicular from
B to the bisector of angle C. Determine the area of triangle AMC.

First solution. Let the line passing through B and parallel to AC meet the bisector of
angle C in point N (Fig.14). Since ∠BNC = ∠ACN = ∠BCN , triangle BCN is isosceles
and BM is its median. Thus SAMC = 1

2
SANC = 1

2
SABC = 1

2
.

8



A B

C

M

N

Fig.14

Second solution. Since SAMC = 1
2
AC ·CM sin C

2
and CM = BC cos C

2
, we have SAMC =

1
4
AC ·BC sin C = SABC

2
= 1

2
.

15. (B.Frenkin) (9–10) Given a circle and a point C not lying on this circle. Consider all
triangles ABC such that points A and B lie on the given circle. Prove that the triangle
of maximal area is isosceles.

Solution. Let C be the given point and A, B lie on the circle. If the tangent to the circle
in A isn’t parallel to CB, then moving point A, we can increase the distance from A to
BC and the area of the triangle. Similarly the tangent at B is parallel to CA. So lines
AC and BC are symmetric wrt the medial perpendicular to AB, and AC = BC (Fig.15).
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Note that the above argument does not depend on the location of the given point inside
or outside the circle.

16. (A.Zaslavsky) (9–11) Three lines passing through point O form equal angles by pairs.
Points A1, A2 on the first line and B1, B2 on the second line are such that the common
point C1 of A1B1 and A2B2 lies on the third line. Let C2 be the common point of A1B2

and A2B1. Prove that angle C1OC2 is right.

Solution. Let C3 be the common point of lines OC1 and A2B1 (Fig.16). Applying the
Ceva and Menelaes theorems to triangle OA2B1 we obtain C2A2/C2B1 = C3A2/C3B1 =
OA2OB1. So OC2 is the external bisector of angle A2OB1, and OC2 ⊥ OC1.

10



O

A1

A2

B1

B2

C2

C3

Fig.16

17. (A.Zaslavsky) (9–11) Given triangle ABC and two points X, Y not lying on its circumcircle.
Let A1, B1, C1 be the projections of X to BC, CA, AB, and A2, B2, C2 be the projections
of Y . Prove that the perpendiculars from A1, B1, C1 to B2C2, C2A2, A2B2, respectively,
concur iff line XY passes through the circumcenter of ABC.

Solution. Let line XY pass through the circumcenter O. Fix point Y and move X along
this line. The perpendiculars from A1, B1, C1 to sidelines of A2B2C2 move uniformly and
remain self-parallel, so their common points move along some lines. When X coincides
with O or Y , the three perpendiculars concur. Hence this is correct for all X.

The above argument yields that for point Y fixed, the locus of points X such that the
perpendiculars concur is line OY or the whole plane. Supposing the second case, take
point C for X. Then A1, B1 coincide with C, and C1 is the foot of the altitude from C.
Since the three perpendiculars concur, we have A2B2 ‖ AB, and so Y lies on OC. Taking
now another vertex for X, we obtain that Y coincides with O.

18. (B.Frenkin) (9–11) Given three parallel lines on the plane. Find the locus of incenters of
triangles with vertices lying on these lines (a single vertex on each line).
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Answer. The stripe whose bounds do not belong to the locus, are parallel to the given
lines and are equidistant from the medium line and one of the extreme lines.

Solution. If we shift an arbitrary triangle whose vertices lie on the given lines by a vector
parallel to these lines, its incenter is shifted by the same vector. So the desired locus is a
stripe. Let us find its bounds.

Let b be the medium line and a, c the extreme lines. Let the vertex A, B, C lie on a,
b, c respectively. Consider the diameter of the incircle, perpendicular to the given lines
(Fig.18), and its endpoint nearest to a. This point lies nearer to a than the touching point
of the incircle with AB, and thus it is nearer to a than b. Since another extreme point of
the diameter lies nearer to a than c, the midpoint I of the diameter lies nearer to a than
the line equidistant from b and c. Interchanging a and c in this argument, we obtain that
I lies inside the stripe indicated in the answer.
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Fig.18

Now consider some triangle ABC with vertices on given lines. Move vertex B to make
side AB perpendicular to the given lines. Now let point C tend to infinity. Then angles
A and B of the triangle tend to right angles and point I tends to a vertex of the right
isosceles triangle with hypotenuse AB. So I tends to the line equidistant from a and b.
Similarly, starting from the same triangle, we can tend I to the line equidistant from b
and c. Thus the locus of points I is the whole indicated stripe.

19. (B.Frenkin) (10–11) Given convex n-gon A1 . . . An. Let Pi (i = 1, . . . , n) be points on its
boundary such that AiPi bisects the area of the polygon. All points Pi don’t coincide with
any vertex and lie on k sides of the n-gon. What is the maximal and the minimal value
of k for each given n?

Answer. The minimal value is 3, the maximal value is equal to n − 1 for n even and
equal to n for n odd.

Solution. Since segments AiPi bisect the area of the polygon, any two of them intersect.
Let point Pi lie on side AjAj+1. Then points Pj and Pj+1 lie on the boundary of the
polygon in opposite directions from Ai, i.e., some of given points lie on three distinct
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sides of the polygon. Now let two vertices of the polygon be the vertices of a regular
triangle and all other vertices lie near the third vertex of this triangle. Then all points Pi

lie on three sides of the polygon.

If n is odd then it is evident that for a regular n-gon all Pi lie on different sides. Let
n = 2m. Since segments AmPm and A2mP2m intersect, points Pm and P2m lie on the same
side from diagonal AmA2m. There exist m sides of polygon lying on the other side from
this diagonal, and point Pi can lie on one of these sides only if the corresponding vertex
Ai lies between Pm and P2m. But there exist at most m − 1 such vertices, and so some
side doesn’t contain points Pi.

Consider now the n-gon such that vertices A1, . . . , An−2 coincide with the vertices of a
regular (n−1)-gon, and vertices An−1, An lie near the remaining vertex of this (n−1)-gon.
Points Pi lie on all sides of this polygon except An−1An.

20. (D.Prokopenko) (10–11) Suppose H and O are the orthocenter and the circumcenter of
acute triangle ABC; AA1, BB1 and CC1 are the altitudes of the triangle. Point C2 is the
reflection of C in A1B1. Prove that H, O, C1 and C2 are concyclic.

Solution. As CA1/CA = CB1/CB = cos C, triangles ABC and A1B1C are similar. So,
since ∠ACO = ∠BCC1 = 90◦−∠B, line CO contains an altitude of A1B1C, thus points
C, O, C2 are collinear (Fig.20). From similarity of ABC and A1B1C it follows as well that
CC2/CC1 = 2 cos C. But it is known that CH = 2CO cos C. Thus CO ·CC2 = CH ·CC1,
which is equivalent to the assertion of the problem.
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21. (F.Nilov) (10–11) The opposite sidelines of quadrilateral ABCD intersect at points P
and Q. Two lines passing through these points meet sides of ABCD in four points which
are vertices of a parallelogram. Prove that the center of this parallelogram lies on the line
passing through the midpoints of diagonals of ABCD.
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Solution. Using affine map, transform the parallelogram to a square and consider the
coordinate system having the diagonals of this square for axes. Let the sides of the given
quadrilateral intersect the coordinate axes in points (±1, 0), (0,±1), and the coordinates
of P , Q be (p, 0) and (0, q) respectively. Then the equations of sidelines are x

p
±y = 1, ±x+

y
q

= 1; the vertices have coordinates (p(q−1)
pq−1

, q(p−1)
pq−1

), (−p(q−1)
pq+1

, q(p+1)
pq+1

), (−p(q+1)
pq−1

,− q(p+1)
pq−1

),
(p(q+1)

pq+1
,− q(p−1)

pq+1
), and the midpoints of diagonals are collinear with the origin of the

coordinate system.

22. (A.Zaslavsky) (10–11) Construct a quadrilateral which is inscribed and circumscribed,
given the radii of the respective circles and the angle between the diagonals of the
quadrilateral.

Solution. If R, r are the radii of the circumcircle and the incircle and d is the distance
between their centers O and I, then it is known that

1

r2
=

1

(R + d)2
+

1

(R− d)2
.

So we can define d and construct these circles. The diagonals of all quadrilaterals with
the given circumcircle and incircle intersect at the same point L lying on line OI, and
their midpoints lie on the circle with diameter OL. Furthermore the segment between
midpoints of the diagonals passes through I, and its length is equal to OL sin φ, where
φ is the given angle. Constructing the chord of this length passing through I, we find the
midpoints of the diagonals and so the vertices of the quadrilateral.

23. (V.Protasov) (10–11) Is it true that for each n, the regular 2n-gon is a projection of some
polyhedron having not greater than n + 2 faces?

Answer. Yes.

Solution. Apply to regular 2n-gon A1 . . . A2n the dilation wrt AnA2n with coefficient
k > 1 (Fig.23). Now bend the obtained polygon along line AnA2n to project its vertices
B1, . . . , Bn−1, Bn+1, . . . , B2n−1 to the vertices of the original regular polygon. Then all lines
BiB2n−i are parallel, and the polyhedron bounded by triangles Bn−1BnBn+1, B2n−1B2nB1,
trapezoids BiBi+1B2n−i−1B2n−i and two halves of the 2n-gon is the desired one.

An = Bn

A2n = B2n

Bi B2n−i

Bi+1 B2n−i−1

Fig.23

24. (F.Nilov) (11) A sphere is inscribed into a quadrangular pyramid. The point of contact
of the sphere with the base of the pyramid is projected to the edges of the base. Prove
that these projections are concyclic.
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Solution. Let ABCD be the base of the pyramid, P its touching point with the insphere,
P ′ its touching point with the exsphere touching the base and the extensions of lateral
faces. Then the ratio of distances from P to sidelines of the base is the same as for
cotangents of halves of dihedral angles at the corresponding edges, and the ratio of
distances from P ′ to sidelines is the same as for tangents of these half angles. Thus
the lines joining each vertex of ABCD with P and P ′ are symmetric wrt the bisector of
the respective angle.

Now let K, L, M , N be the reflections of P wrt AB, BC, CD, DA. Since, for example,
BK = BP = BL, the medial perpendicular to KL coincides with the bisector of angle
KBL, i.e., line BP ′ (Fig.24). So P ′ is the circumcenter of KLMN . Using the homothety
with center P and coefficient 1/2 we obtain that the midpoint of PP ′ is the center of the
circle passing through the projections of P , to the edges of the base.
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