
VII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
THE CORRESPONDENCE ROUND. SOLUTIONS

1. (A.Zaslavsky) (8) Does a convex heptagon exist which can be divided into 2011 equal triangles?

Solution. Yes, it does. For example, let T be a right-angled triangle such that its hypothenuse
is equal to 1003 and one of its legs is equal to 1. Consider rectangles formed by two such
triangles and compose a rectangle with side equal to 1003 from such rectangles. To one of these
sides, attach an isosceles triangle composed from two triangles equal to T , and to the second
side attach a quadrilateral composed from three such triangles (fig.1).
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Second solution. Take a square with side equal to 34 and from three its angles cut isosceles
right-angled triangles with legs equal to 3, 6 and 16. The obtained heptagon can be divided
into isosceles right-angled triangles with legs equal to 1, and the number of these triangles is
equal to 2 · 342 − 9− 36− 256 = 2011.

Also we can take a rectangle m × n and cut from it isosceles right-angled triangles with legs
x, y, z such that 2mn− x2 − y2 − z2 = 2011. The participants of olympiad found several such
solutions.

Third solution. (M.Amanzholov, Kazahstan) Let T be an isosceles triangle with the base
equal to 1 and with the angle at the opposite vertex equal to 120◦. Then the regular triangle
with side equal to 1 can be divided into three such triangles. On the other hand, from 335
regular triangles we can compose an isosceles trapezoid with bases equal to 168 and 167 and
lateral sides equal to 1. Two such trapezoids with common greatest base form a convex hexagon
which can be divided into 2010 triangles equal to T . Joining such triangle to its smallest side,
we construct the sought heptagon.

2. (From Singapore olympiads) (8) Let ABC be a triangle with sides AB = 4, AC = 6. Point H
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is the projection of vertex B to the bisector of angle A. Find MH, where M is the midpoint
of BC.

Solution. Let D be the common point of BH and AC (fig.2). Then AH is the bisector and
the altitude of triangle ABD. Thus this triangle is isosceles, i.e. AD = BD and BH = HD.
So MH ic the medial line of triangle BCD and MH = CD/2 = (AC − AB)/2 = 1.
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3. (D.Shvetsov) (8) Let ABC be a triangle with ∠A = 60◦. The midperpendicular of segment AB
meets line AC at point C1. The midperpendicular of segment AC meets line AB at point B1.
Prove that line B1C1 touches the incircle of triangle ABC.

Solution. Let B0, C0 be the midpoints of AC, AB respectively. Since triangles AB0B1, AC0C1

are right-angled with ∠A = 60◦, we have AB1 = 2AB0 = AC and AC1 = 2AC0 = AB. Thus
line B1C1 is the reflection of BC in the bisector of angle A. Since this bisector passes through
the incenter and BC touches the incircle, B1C1 also touches the incircle.

4. (B.Frenkin) (8) Segments AA′, BB′, CC ′ are the bisectrices of triangle ABC. It is known that
these lines are also the bisectrices of triangle A′B′C ′. Is it true that triangle ABC is regular?

Solution. Yes, the diagonal CC ′ of quadrilateral A′C ′B′C is the bisector of its angles C and
C ′, thus it is the symmetry axis. Then A′C = B′C, A′C ′ = B′C ′, ∠CB′A′ = ∠CA′B′ and
∠AB′C ′ = ∠BA′C ′. Similarly ∠BC ′A′ = ∠BA′C ′ = ∠AB′C ′ = ∠AC ′B′. Thus triangles
AB′C ′ and BA′C ′ are equal, i.e. AB′ = BA′ and AC = BC. Similarly we obtain that AB =
BC.

5. (B.Frenkin) (8) Given triangle ABC. The midperpendicular of side AB meets one of the
remaining sides at point C ′. Points A′ and B′ are defined similarly. For which original triangles
triangle A′B′C ′ is regular?

Answer. For regular triangles and triangles with angles equal to 30, 30 and 120 grades.

Solution. Consider a non-regular triangle ABC. Let AB be its greatest side. Then points A′,
B′ lie on segment AB. From the condition of the problem we obtain that C ′C0, where C0 is
the midpoint of AB, is the bisector of segment A′B′, thus CA′ = A′B = AB′ = CB′, i.e. C ′

coincides with C and triangle ABC is isosceles. Also we have 2∠A = ∠A+∠CAB′ = ∠CB′B =
60◦, so ∠A = ∠B = 30◦.
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6. (A.Akopjan) (8) Two unit circles ω1 and ω2 intersect at points A and B. M is an arbitrary
point of ω1, N is an arbitrary point of ω2. Two unit circles ω3 and ω4 pass through both points
M and N . Let C be the second common point of ω1 and ω3, and D be the second common
point of ω2 and ω4. Prove that ACBD is a parallelogram.

Solution. Let Oi be the center of circle ωi. From the condition of the problem we obtain
that O1AO2B, O1CO3M , O3MO4N , O4NO2D are rhombuses with sides equal to 1. Then−−→
O1C =

−−−→
MO3 =

−−→
O4N =

−−→
DO2 and

−−→
O1A =

−−→
BO2. Thus

−→
AC =

−−→
DB, q.e.d.

7. (A.Akopjan) (8–9) Points P and Q on sides AB and AC of triangle ABC are such that
PB = QC. Prove that PQ < BC.

Solution. Let T be the fourth vertex of parallelogram CBPT . Then PT = BC and CT =
BP = CQ (fig.7). Hence ∠PQT > ∠TQC = ∠QTC > ∠QTP , i.e. PT > PQ.

A

B C

P

Q

T

Рис. 7

8. (D.Shvetsov) (8–9) The incircle of right-angled triangle ABC (∠B = 90◦) touches AB,BC,CA
at points C1, A1, B1 respectively. Points A2, C2 are the reflections of B1 in lines BC, AB
respectively. Prove that lines A1A2 and C1C2 meet on the median of triangle ABC.

Solution. Let I be the incenter and P be the common point of line A1A2 with median BB0

(fig.8). Since ∠IA1P = ∠IA1B1 = ∠C/2 = ∠PBA1/2, then ∠BA1P = ∠BPA1, i.e. BP =
BA1. Since BA1 = BC1, line C1C2 also passes through P .
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9. (D.Shvetsov) (8–9) Let H be the orthocenter of triangle ABC. The tangents to the circumcircles
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of triangles CHB and AHB at point H meet AC at points A1 and C1 respectively. Prove that
A1H = C1H.

Solution. We have from the condition of the problem that ∠AHC1 = ∠ABH. Thus ∠C1HB′ =
∠AHB′ − ∠ABH = ∠HAB = π/2 − ∠ABC (B′ is the base of the altitude). Similarly
∠B′HA1 = π/2− ∠ABC, i.e triangle A1HC1 is isosceles.

10. (M.Volchkevich) (8–9) The diagonals of trapezoid ABCD meet at point O. Point M of lateral
side CD and points P , Q of bases BC and AD are such that segments MP and MQ are
parallel to the diagonals of the trapezoid. Prove that line PQ passes through point O.

Solution. By Thales theorem AQ/QD = AM/MB = CP/PB. Thus AQ/PC = AD/BC =
AO/CO. Then triangles AOQ and COP are similar and ∠AOQ = ∠COP .

11. (D.Shvetsov) (8–10) The excircle of right-angled triangle ABC (∠B = 90◦) touches side BC at
point A1 and touches line AC at point A2. Line A1A2 meets the incircle of ABC for the first
time at point A′; point C ′ is defined similarly. Prove that AC||A′C ′.

Solution. Let I be the incenter and PQ be the diameter of the incircle parallel to AC (fig.11).
Since ∠PIC = ∠ACI = ∠BCI and CA1 = (AB + BC − AC)/2 = r = IP , quadrilateral
IPA1C is an isosceles trapezoid. Then line A1P is parallel to IC, i.e it coincides with A1A2.
So P coincides with A′, and similarly Q coincides with C ′.
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12. (V.Yasinsky) (8–10) Let AP and BQ be altitudes of acute-angled triangle ABC. Using a
compass and a ruler, construct a point M on side AB such that ∠AQM = ∠BPM .

Solution. Since points P , Q lie on the circle with diameter AB, ∠BPQ = 180◦ − ∠A. Then
∠MPQ = ∠BPQ−∠BPM = 180◦−∠A−∠AQM = ∠AMQ. Thus the circle passing through
points P , Q, M touches AB (fig.12).
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13. (B.Frenkin) a) (8–10) Find the locus of centroids for triangles whose vertices lie on the sides of
a given triangle (each side contains a single vertex).

b) (11) Find the locus of centroids for tetrahedrons whose vertices lie on the faces of a given
tetrahedron (each face contains a single vertex).

Solution. a) Let points A′, B′, C ′ lie on sides BC, CA, AB of triangle ABC. Since the midpoint
C0 of segment A′B′ lies inside triangle ABC, the distance from C0 to AB is shorter than the
respective altitude of ABC. Since the centroid M of A′B′C ′ divides segment C ′C0 as 2 : 1, the
distance from M to AB is less than 2/3 of this altitude. Similarly the distances from M to
two remaining sidelines are less than 2/3 of respective altitudes, i.e. M lies inside a hexagon
formed by the sides of triangle and its reflections in the centroid of ABC. When two vertices
of A′B′C ′ tend to the same vertex of ABC, M tends to the boundary of this hexagon. Thus
all its inner points belong to the sought locus.

b) Similarly to a) we obtain that the sought locus is the polyhedron bounded by the faces of the
given tetrahedron and by the planes parallel to the faces and dividing the respective altitudes
in ratio 1 : 3 starting from the vertex. Four of eight faces of this polyhedron are triangles, and
four remaining faces are hexagons.

14. (B.Frenkin) (9) In triangle ABC, the altitude and the median from vertex A form (together
with line BC) a triangle such that the bisectrix of angle A is the median; the altitude and the
median from vertex B form (together with line AC) a triangle such that the bisectrix of angle
B is the bisectrix. Find the ratio of sides for triangle ABC.

Solution. Since the bisector of angle B bisects the angle between the altitude and the median,
angle B is right. Thus the altitude from A coincides with AB, i.e. the bisector of angle A
divides BC in ratio 1 : 3. Then ratio AB : AC also is equal to 1 : 3 and by Pythagoras theorem
BC : AB = 2

√
2.

15. (V.Protasov) (9–10) Given a circle with center O and radius equal to 1. AB and AC are the
tangents to this circle from point A. Point M on the circle is such that the areas of quadrilaterals
OBMC and ABMC are equal. Find MA.

Solution. Since SOBMC − SABMC = SABC − SOBC + 2SMBC , the locus of points for which
SOMBC = SAMBC , is the bisector of segment OA. Thus AM = OM = 1.
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16. (P.Dolgirev) (9–10) Given are triangle ABC and line l. The reflections of l in AB and AC meet
at point A1. Points B1, C1 are defined similarly. Prove that

a) lines AA1, BB1, CC1 concur;

b) their common point lies on the circumcircle of ABC;

c) two points constructed in this way for two perpendicular lines are opposite.

Solution. Firstly note that when l moves remaining parallel to itself with constant velocity,
the reflections of l in AC and BC also move with constant velocities. Then C1 moves along the
line passing through C, i.e the common point of CC1 with the circumcircle depends only on
the direction of l. Now let A′, B′ be the common points of l with BC and AC (fig.16). Then
∠C1B

′C = ∠CB′A′, ∠C ′AC = ∠BA′C1. Thus C is the incenter or the excenter of triangle
A′B′C1, i.e. C1C bisects angle A′C1B

′ or the adjacent angle. But the angle between lines A′C1

and B′C1 doesn’t depend on l, thus the angle between CC1 and C1A
′ also doesn’t depend on l.

So when l rotates, lines AA1, BB1, CC1 rotate with the same velocity. This yields all assertions
of the problem.
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Fig.16

17. (B.Frenkin) (9–11) a) Does there exist a triangle in which the shortest median is longer that
the longest bisectrix?

b) Does there exist a triangle in which the shortest bisectrix is longer that the longest altitude?

Solution. a) No, it doesn’t. Let the lengths of sides BC,AC,AB be equal to a, b, c respectively
and a ≤ b ≤ c. Now let CM be the median, AL be the bisector. If angle C isn’t acute then
AL > AC. Since BC ≤ AC, ∠CMA isn’ acute, thus CM ≤ AC and CM < AL.

Now let ∠C be acute. Since AB is the greatest side, ∠C ≥ 60◦ and angles A,B are acute.
Then the base H of altitude AH lies on segment BC. Thus AH (and AL) isn’t less than
AC cos 60◦ = b

√
3/2. But the square of CM is equal to 2a2+2b2−c2

4
≤ 2a2+b2

4
≤ 3b2

4
. So CM isn’t

greater than b
√
3/2 and can’t exceed the bisector of angle A.

b) No, it doesn’t. Let a ≤ b ≤ c and l be the bisector of angle C. Then (al+bl) sin C
2
= 2SABC =

ab sinC, i.e. l = 2ab cos C
2

a+b
. On the other hand, the altitude from A is equal to h = b sinC. Since
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a+ b ≥ 2a and C ≥ 60◦, h/l = (a+ b) sin C
2
/a ≥ 1.

Note. It is easy to construct a triangle such that its shortest median is longer than its longest
altitude.

18. (A.Zaslavsky) (9–11) On the plane, given are n lines in general position, i.e. any two of them
aren’t parallel and any three of them don’t concur. These lines divide the plane into several
parts. What is

a) the minimal;

b) the maximal

number of these parts that can be angles?

Solution. a) Answer. 3. Consider the convex envelope of all common points of given lines.
Two lines passing through some vertex of this envelope divide the plane into four angles, and
one of them contains all the remaining points. Thus the remaining lines don’t intersect the
vertical angle and the number of angles can’t be less than three. The example with three angles
can be constructed by induction: the line in turn must intersect all previous lines inside the
triangle which is the convex envelope of common points.

b) Answer. n if n is odd, n − 1 if n > 2 is even. Construct a circle containing all common
points. The given lines divide it into 2n arcs. Let AB, BC be two adjacent arcs, X, Y be
the common points of the line passing through B, with the lines passing through A and C
respectively. If X lies on segment BY then the part containing arc BC can’t be an angle. Thus
only one of two parts containing adjacent arcs can be an angle. Thus the number of angles isn’t
greater than n, and an equality is possible only when the part containing each second arc is
an angle. But if n is even, this yields that there exist two angles containing the opposite arcs.
Since these two angles are formed by the same lines, this isn’t possible if n > 2. If n is odd
then n parts formed by the sidelines of a regular n-gon are angles. It is evident that we can
add one line without reduction of the number of angles.

Second solution of a). (A.Goncharuk, Kharkov) Let polygon T be the union of all bounded
parts. Then all angles are vertical to the angles of T , which are less than 180◦. From the formula
for the sum of angles we obtain that there exist three such angles. The polygon with three angles
can be constructed in the following way. Take point D inside triangle ABC, inscribe a circle
with sufficiently small radius in angle ADB and take n − 4 points on the smaller arc formed
by touching points. The tangents in these points and lines AC, BC, AD, BD form the sought
polygon.

19. (A.Zaslavsky) (9–11) Does there exist a nonisosceles triangle such that the altitude from one
vertex, the bisectrix from the second one and the median from the third one are equal?

Solution. Yes, it does. Fix vertices A, B, construct point D which is the reflection of A in
B, and consider an arbitrary point C such that ∠BCD = 150◦. The altitude of triangle ABC
from A is equal to the distance DH from D to BC, i.e. CD/2. The median BM from B as
the medial line in triangle ACD also is equal to CD/2 (fig.19). Now move point C along arc
BD, containing angle 150◦. When C tends to B, the bisector from C tends to zero and the
median from B tends to AB/2. When C tends to D, the median from B tends to zero and the
bisector isn’t less than BC. Thus there exists a point C for which the bisector is equal to two
remaining segments.
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Note. When C moves from B to D, the bisector increases and the altitude decreases. Thus
the angles of the sought triangle can be determined uniquely.

20. (N.Beluhov, A.Zaslavsky) (9–11) Quadrilateral ABCD is circumscribed around a circle with
center I. Points M and N are the midpoints of diagonals AC and BD. Prove that ABCD is
a cyclic quadrilateral if and only if IM : AC = IN : BD.

Solution. Consider the case when ABCD isn’t a trapezoid. The other case needs no essential
changes.

By Newton theorem I lies on MN . Let λ = MI : IN . On the sides, construct points P , Q, R
and S such that AP : PB = CQ : QB = CR : RD = DS : SA = λ. Let us prove that I is the
midpoint of segments PR and QS.

Use the masses method: place the unit masses in points A, C, and the masses equal to λ in
points B, D. Replacing two first masses by the mass 2 in point M , and two remaining masses
by the mass 2λ in point N , we obtain that I is the masscenter of four masses. On the other
hand, we can replace the masses in A and B by the mass 1 + λ in point P and two remaining
masses by the same mass in point R.

Now since I is the midpoint of PR, and lines AB and CD are non-parallel tangents to the
circle with center I, the angles formed by these lines with PR are equal i.e. PR is parallel to
the bisector of some angle formed by these lines. Similarly QS is parallel to the bisector of
some angle formed by AD and BC. Thus ABCD is cyclic iff PR ⊥ QS. Since PQRS is a
parallelogram (with side parallel to AC and BD), this yields that PQRS is a rhombus. But
PQ = QR ⇔ 1

1+λ
AC = λ

1+λ
BD ⇔ λ = AC : BD, q.e.d.

21. (V.Yasinsky) (10–11) On a circle with diameter AC, let B be an arbitrary point distinct from
A and C. Points M , N are the midpoints of chords AB, BC, and points P , Q are the midpoints
of smaller arcs related to these chords. Lines AQ and BC meet at point K, and lines CP and
AB meet at point L. Prove that lines MQ, NP and KL concur.

Solution. Lines PM and QN meet in the center O of the circle. Thus it suffices to apply the
Desargues theorem to triangles PML and NQK.

22. (G.Feldman) (10–11) Let CX, CY be the tangents from vertex C of triangle ABC to the circle
passing through the midpoints of its sides. Prove that lines XY , AB and the tangent at point
C to the circumcircle of ABC concur.

Solution. The homothety with center C and factor 1/2 transforms line XY to the radical axis
of point C and the circle passing through the midpoints A′, B′, C ′ of BC, CA, AB. On the
other hand, the tangent at C to the circumcircle touches also the circle A′B′C ′, i.e. it is the
radical axis of this circle and point C. The common point of these radical axes lies on A′B′.
Using the inverse homothety we obtain the assertion of the problem.
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23. (N.Beluhov, M.Marinov) (10–11) Given are triangle ABC and line l intersecting BC, CA and
AB at points A1, B1 and C1 respectively. Point A′ is the midpoint of the segment between the
projections of A1 to AB and AC. Points B′ and C ′ are defined similarly.

(a) Prove that A′, B′ and C ′ lie on some line l′.

(b) Suppose l passes through the circumcenter of △ABC. Prove that in this case l′ passes
through the center of its nine-points circle.

Solution. Let Pa, Pb, Pc be the midpoints of altitudes AHa, BHb, CHc. It is evident that A′,
B′, C ′ lie on the sidelines of triangle PaPbPc and divide its sides in the same ratios as points
A1, B1, C1 divide the sides of ABC. Thus a) immediately follows from Menelaos theorem. In
addition, if l passes through some fixed point, then l′ passes also through some fixed point, so
it suffices to prove b) for two lines passing through the circumcenter O. Let us consider for
example the lines passing through a vertex of ABC.

Let C1 be the common point of CO and AB; X, Y be the projections of C1 to AC and BC;
A0, B0, C0 be the midpoints of BC, CA, AB; U , V be the midpoints of XY and A0B0; Q be
the common point of the bisector to segment A0B0 and of line UPc (fig.23). Since XY ∥ AB,
points C, V , U are collinear. Then V Q/CPc = UV/UC = C1O/CC1, i.e. V Q = OC0/2 and Q
is the circumcenter of A0B0C0.
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Fig.23

24. (A.Zaslavsky) (10–11) Given is an acute-angled triangle ABC. On sides BC, CA, AB, find
points A′, B′, C ′ such that the longest side of triangle A′B′C ′ is minimal.

Solution. Firstly let us prove that the sought triangle is pedal, i.e three perpendiculars from
its vertices to respective sides of ABC concur. Indeed for an arbitrary triangle A′B′C ′ circles
AB′C ′, BC ′A′ and CA′B′ have some common point P . Let A′′, B′′, C ′′ be the projections of P
to BC, CA, AB. Since ∠A′PB′ = ∠A′′PB′′ = π − ∠C etc., ∠A′′PA′ = ∠B′′PB′ = ∠C ′′PC ′,
and triangle A′′B′′C ′′ can be obtained from A′B′C ′ by spiral similarity with center P and the
factor less than 1.

Consider now point T with regular pedal triangle and prove that the pedal triangle of any
point P has at least one greater side. Let A′, B′ be the projections of P to BC and AC. Then
A′B′ = PC sinC, i.e. A′B′ isn’t greater than the side of pedal triangle of T iff PC ≤ TC.
Similarly we obtain PB ≤ TB, PA ≤ TA. It is clear that these three inequalities can be
correct only for point T .
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Finally construct point T . From its definition we have TA · BC = TB · AC = TC · AB. First
equality defines the Apollonius circle passing through C and the bases of internal and external
bisectors of angle C. Similarly the second equality defines the second circle. T is the common
point of these circles lying inside triangle ABC.

25. (N.Beluhov) (10–11) Three equal regular tetrahedrons have the common center. Is it possible
that all faces of the polyhedron that forms their intersection are equal?

Solution. Yes, it is possible. Let the first tetrahedron touch their common inscribed sphere at
points A,B,C,D. Rotate these points around the common perpendicular (and bisector) of the
segments AB and CD by 120◦ to obtain A′, B′, C ′, D′ and by 240◦ to obtain A′′, B′′, C ′′, D′′

(the twelve points form two regular hexagons). The tangential planes to the sphere in these
twelve points form the three tetrahedrons needed. Indeed, for any two of these points there
exists an isometry that maps this set of twelve points onto itself and maps one of these two
points to another one. These isometries enable us to map any facet of the obtained polygon
onto any other one.
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