
IX GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN.

THE CORRESPONDENCE ROUND. SOLUTIONS.
1. (N.Moskvitin) Let ABC be an isosceles triangle with AB = BC. Point E lies on side AB, and

ED is the perpendicular from E to BC. It is known that AE = DE. Find ∠DAC.
Answer. 45◦.
Solution. By the external angle theorem ∠AED = 90◦+∠B = 270◦− 2∠A (fig.1). Therefore,
∠EAD = (180◦ − ∠AED)/2 = ∠A− 45◦.
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2. (L.Steingarts) Let ABC be an isosceles triangle (AC = BC) with ∠C = 20◦. The bisectors of
angles A and B meet the opposite sides in points A1 and B1 respectively. Prove that triangle
A1OB1 (where O is the circumcenter of ABC) is regular.
Solution. On sides BC and AC take points A′ and B′ such that AB′ = B′O = OA′ = A′B. It
is clear that A′B′ ∥ AB, i.e. ∠CA′B′ = ∠CBA = 80◦. Also ∠A′OB = ∠A′BO = ∠BCO = 10◦.
Thus ∠CA′O = 20◦ and ∠OA′B′ = 60◦, i.e triangle OA′B′ is regular. Then A′B′ = A′B and
∠A′BB′ = ∠A′B′B = ∠ABB′ (fig.2). Therefore B′ coincides with B1. Similarly A′ coincides
with A1, q.e.d.
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3. (D.Shvetsov) Let ABC be a right-angled triangle (∠B = 90◦). The excircle inscribed into the
angle A touches the extensions of the sides AB, AC at points A1, A2 respectively; points C1,

1



C2 are defined similarly. Prove that the perpendiculars from A, B, C to C1C2, A1C1, A1A2

respectively, concur.
Solution.

Let I be the incenter of ABC, and D be the fourth vertex of rectangle ABCD. Since AI ⊥ A1A2,
CI ⊥ C1C2, the perpendiculars from A to CC1 and from C to AA1 meet in the incenter J of
triangle ACD. Then it is sufficient to prove that DI ⊥ A1C1. Let X, Y , Z be the projections of
I to AB, BC, CD respectively. Then BC1 = XC2 = ZD and A1B = CY = IZ, thus triangles
A1BC1 and IZD are equal, i.e. ∠IDZ = ∠A1C1B (fig.3), that proves the required assertion.
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4. (F.Ivlev) Let ABC be a nonisosceles triangle. Point O is its circumcenter, and point K is the
center of the circumcircle w of triangle BCO. The altitude of ABC from A meets w at a point
P . The line PK intersects the circumcircle of ABC at points E and F . Prove that one of the
segments EP and FP is equal to the segment PA.
Solution. Points O and K lie on the bisector of segment BC, thus OK ∥ AP and ∠OPK =
∠POK = ∠OPA. Therefore the reflection A′ of A in OP lies on PK. Also OA′ = OA, i.e. A′

lies on the circumcircle of ABC (fig.4). Thus A′ coincides with one of points E, F .
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5. (B.Frenkin) Four segments drawn from a given point inside a convex quadrilateral to its vertices,
split the quadrilateral into four equal triangles. Can we assert that this quadrilateral is a
rhombus?
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Answer. Yes.

Solution. Let ABCD and O be the given quadrilateral and point. In equal triangles the angles
opposite to equal sides are equal. Since △ABO = △CBO, angles BAO and BCO opposite to
BO are equal. Similarly ∠DAO = ∠DCO, thus ∠BAD = ∠BCD. Two remaining angles of
the quadrilateral are similarly equal, therefore ABCD is a parallelogram.

There exist two adjacent angles with vertex O such that their sum is not less than π, suppose
that these angles are ∠AOB and ∠COB. The second angle is equal to some angle of triangle
AOB. This can be only ∠AOB, because its sum with any of two remaining angles of AOB is
less than π. The sides of equal triangles AOB and COB opposite to these angles are equal.
Then AB = BC and ABCD is a rhombus.

6. (D.Shvetsov) Diagonals AC and BD of a trapezoid ABCD meet at point P . The circumcircles
of triangles ABP and CDP intersect the line AD for the second time at points X and Y
respectively. Let M be the midpoint of segment XY . Prove that BM = CM .

Solution.

By condition, ∠BXA = ∠BPA = ∠CPD = ∠CY D (fig.6). Thus BXY C is an isosceles
trapezoid, which proves the required assertion.
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7. (D.Shvetsov) Let BD be a bisector of triangle ABC. Points Ia, Ic are the incenters of triangles
ABD, CBD respectively. The line IaIc meets AC in point Q. Prove that ∠DBQ = 90◦.

Solution.

Lines AIa and CIc meet in the incenter I of ABC. By the bisectrix theorem AIa/IaI = AD/ID,
CIc/IcI = CD/ID. By the Menelaos theorem QA/QC = AD/CD = AB/BC. Therefore BQ
is the external bisectrix of angle B, q.e.d.

8. (M.Plotnikov) Let X be an arbitrary point inside the circumcircle of a triangle ABC. The lines
BX and CX meet the circumcircle for the second time at points K and L respectively. The
line LK intersects BA and AC at points E and F respectively. Find the locus of points X such
that the circumcircles of triangles AFK and AEL touch.

Answer. The arc of the circle passing through B, C and the circumcenter O of ABC.

Solution. Let the circles touche. Then the angles between their common tangent and lines AC
and AB are equal to angles ALE and AKF respectively. Since these two angles are equal to
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angles ABX and ACX, their sum is equal to angle A and ∠BXC = 2∠A = ∠BOC. Similarly
we obtain that for any point of the arc the correspondent circles touche.

9. (M.Plotnikov) Let T1 and T2 be the points of tangency of the excircles of a triangle ABC with
its sides BC and AC respectively. It is known that the reflection of the incenter of ABC across
the midpoint of AB lies on the circumcircle of triangle CT1T2. Find ∠BCA.

Answer. 90◦.

Solution. Let D be the fourth vertex of parallelogram ACBD, J be the incenter of ABD,
S1, S2 be the points of tangency of the incircle of ABC with AD and BD. Then S1T1 ∥ AC,
S2T2 ∥ BC and ∠T1JT2 = ∠S1JS2 = π − ∠C. Also DS1 = DS2, i.e. lines S1T1, S2T2 and DJ
concur. Therefore J coincides with the common point of lines S1T1 and S2T2, i.e. ∠C = 90◦

(fig.9).
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10. (D.Shvetsov) The incircle of triangle ABC touches the side AB at point C ′; the incircle of
triangle ACC ′ touches the sides AB and AC at points C1, B1; the incircle of triangle BCC ′

touches the sides AB and BC at points C2, A2. Prove that the lines B1C1, A2C2, and CC ′

concur.

Solution.

Since AC ′ − BC ′ = AC − BC, the incircles of triangles ACC ′ and BCC ′ touche CC ′ at the
same point. Therefore CB1 = CA2. Also AB1 = AC1, BA2 = BC2, and if we find the angles
of quadrilateral A2B1C1C2, we obtain that it is cyclic. Thus B1C1, A2C2 and CC ′ concur in
the radical center of three circles: the circumcircle of A2B1C1C2 and the incircles of triangles
ACC ′, BCC ′ (fig.10).
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11. (P.Kozhevnikov) a) Let ABCD be a convex quadrilateral and r1 ≤ r2 ≤ r3 ≤ r4 be the radii
of the incircles of triangles ABC, BCD, CDA, DAB. Can the inequality r4 > 2r3 hold?

b)The diagonals of a convex quadrilateral ABCD meet in point E. Let r1 ≤ r2 ≤ r3 ≤ r4 be
the radii of the incircles of triangles ABE, BCE, CDE, DAE. Can the inequality r2 > 2r1
hold?

Answer. a) No. b) No.

Solution. a) Suppose that r4 = r(ABC). It is sufficient to prove that r(ABC)/2 < max{r(ABD), r(CBD)}.
The midpoint K of AC lies inside one of triangles ABD, CBD, for example inside ABD.
Then triangle AKL, where L is the midpoint of AB, lies inside triangle ABD, therefore
r(ABC)/2 = r(AKL) < r(ABD).

b) Let r = r1 be the inradius of triangle ABE. The diameters of the incircles of triangles BCE,
ADE, are less than the altitudes of these triangles coinciding with altitudes ha, hb of ABE.
Thus it is sufficient to prove that one of these altitudes is less than 4r. Suppose that AE ≥ BE.
Then the semiperimeter p < AE +BE ≤ 2AE and hb = 2S/AE = 2pr/AE < 4r.

Comment. Note that the answer to both questions will be positive if we replace 2 to any
smaller number.

12. (B.Frenkin) (8–11) On each side of triangle ABC, two distinct points are marked. It is known
that these points are the feet of the altitudes and the bisectors.

a) Using only a ruler determine which points are the feet of the altitudes and which points are
the feet of the bisectors.

b) Solve p.a) drawing only three lines.

Solution. Preliminary hints. Since all points are distinct the triangle isn’t isosceles. For
each side, the foot of the altitude lies between the foot of the bisector and the smaller of two
remaining sides. Thus it is sufficient to define the smallest and the greatest of the sides. We
will denote the feet of the bisector and the altitude from vertex X as LX and HX respectively.

Lemma. If |AC| > |BC| then lines LBLA and HBHA meet the extension of side AB beyond
B.

Proof. Let LBD be the perpendicular from LB to AB, and CH be the altitude. By the bisector
theorem |LBD| : |CH| = |AB| : (|BC|+ |AB|). Similarly if LAE is the perpendicular from LA

to AB, then |LAE| : |CH| = |AB| : (|AC|+ |AB|). Furthermore |AC| > |BC|, |LBD > |LAE|,
thus LBLA meets the extension of AB beyond B.

Points HB, HA lie on the semicircle with diameter AB. Since ∠HAAB < ∠HBBA, the distance
from HA to AB is less than the distance from HB to AB. The lemma is proved.

Simple solution of p.a). Joining the given points with the opposite vertices we obtain two
families of concurrent lines. Take two points of the same family on two sides and draw the line
through them. By the lemma this line meets the extension of the third side beyond the vertex
lying on the smaller of two sides. Therefore we can define the smaller of any two sides.

Solution of p.b). Take for each vertex the nearest marked points on two adjacent sides and
join these points. We will prove that these lines meet the prolongation of the greatest side beyond
the vertex of the medial angle and the extensions of two remaining sides beyond the vertex of
the greatest angle. From this we can define the greatest and the smallest side.
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Let us prove the above assertion. Suppose that |AB| > |AC| > |BC|. The marked points
nearest to the vertex of the smallest angle are the feet of the bisectors, and the points nearest
to the vertex of the greatest angle are the feet of the altitudes. By the lemma, the lines joining
these points meet the extension of BC beyond C and the extension of AB beyond B. The
marked points nearest to B are HC and LA. By the lemma, line LCLA meets the extension of
AC beyond C in some point P . Ray HCLA passes inside triangle HCCP and thus intersects
segment CP , q.e.d.

13. (F.Ivlev) Let A1 and C1 be the tangency points of the incircle of triangle ABC with BC and
AB respectively, A′ and C ′ be the tangency points of the excircle inscribed into the angle B
with the extensions of BC and AB respectively. Prove that the orthocenter H of triangle ABC
lies on A1C1 if and only if the lines A′C1 and BA are orthogonal.

Solution. Suppose that A′C1 ⊥ BA. Then by Thales theorem the altitude from C divides
segment A1C1 in ratio A1C : CA′ = p− c : p− a. The altitude from A passes through the same
point. The inverse assertion is obtained similarly.

14. (D.Shvetsov) Let M , N be the midpoints of diagonals AC, BD of right-angled trapezoid ABCD
(∠A = ∠D = 90◦). The circumcircles of triangles ABN , CDM meet line BC in points Q, R.
Prove that the distances from Q, R to the midpoint of MN are equal.

Solution. Let X, Y be the projections of N and M to BC. Than we have to prove that
RY = XQ. Since ∠NQX = ∠NAB = ∠DBA, triangles XQN and ABD are similar (fig.14).
Thus XQ = AB · NX/AD. But NX = CD sin∠BCD/2 = CD · AD/2BC, therefore XQ =
AB · CD/2BC = RY .

A B

C
D

Q

X

N

Fig.14

15. a) (V.Rastorguev) Triangles A1B1C1 and A2B2C2 are inscribed into triangle ABC so that
C1A1 ⊥ BC, A1B1 ⊥ CA, B1C1 ⊥ AB, B2A2 ⊥ BC, C2B2 ⊥ CA, A2C2 ⊥ AB. Prove that
these triangles are equal.

b) (P.Kozhevnikov) Points A1, B1, C1, A2, B2, C2 lie inside triangle ABC so that A1 is on
segment AB1, B1 is on segment BC1, C1 is on segment CA1, A2 is on segment AC2, B2 is
on segment BA2, C2 is on segment CB2 and angles BAA1, CBB1, ACC1, CAA2, ABB2, BCC2

are equal. Prove that triangles A1B1C1 and A2B2C2 are equal.

Solution. a) Inscribe triangle A2B2C2 into triangle A′B′C ′ in such a way that C2A2 ⊥ B′C ′,
A2B2 ⊥ C ′A′, B2C2 ⊥ A′B′. It is clear that the corresponding sidelines of triangles ABC

6



and B′C ′A′ are symmetric wrt the circumcenter of A2B2C2. This symmetry maps A2B2C2 to
B1C1A1. Therefore these triangles are equal and their circumcenters coincide.

b) Consider the chords AA′, BB′, CC ′, AA′′, BB′′, CC ′′ of the circumcircle of ABC lying on
the lines A1B1, B1C1, C1A1, A2C2, B2A2, C2B2. By condition, arcs AC ′, BA′, CB′, AB′′, CA′′,
BC ′′ are equal. Let their size be φ. The rotation around the circumcenter to φ maps AA′, BB′,
CC ′ to BB′′, CC ′′, AA′′ respectively, thus it maps A1B1C1 to A2B2C2 (fig.15).
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Comment. In a special case when triangle A1B1C1 degenerates to a point, A2B2C2 also
degenerates to a point, and the distances from these two points to the circumcenter are equal.
These points are the Brockard points of the triangle.

16. (F.Ivlev) The incircle of triangle ABC touches BC, CA, AB at points A′, B′, C ′ respectively.
The perpendicular from the incenter I to the median from vertex C meets the line A′B′ in
point K. Prove that CK ∥ AB.

Solution. The polar transformation wrt the incircle maps the perpendicular from I to the
median into the infinite point of this median, the image of line A′B′ is point C, and the image
of the line passing through C and parallel to AB is the common point P of A′B′ and IC ′. Thus
we have to prove that P lies on the median.

Since IA′ = IB′, ∠PIB′ = ∠A, ∠PIA′ = ∠B, we have B′P : A′P = BC : AC. Since
CA′ = CB′, we have sin∠ACP : sin∠BCP = BC : AC, i.e. CP bisects AB (fig.16).
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17. (A.Zaslavsky) An acute angle between the diagonals of a cyclic quadrilateral is equal to ϕ.
Prove that an acute angle between the diagonals of any other quadrilateral having the same
sidelengths is smaller than ϕ.

Solution. Let the diagonals of quadrilateral ABCD meet in point P . Put PA = a, PB = b,
PC = c, PD = d and express the sidelengths of ABCD through a, b, c, d and cosϕ. Then

|AB2 −BC2 + CD2 − CA2| = 2 cosϕ(ab+ bc+ cd+ da) = 2AC ·BD cosϕ.

By Phtolomeos theorem AC · BD ≤ AB · CD + BC · AD, and the equality holds only for a
cyclic quadrilateral.

18. (A.Ivanov) Let AD be a bisector of triangle ABC. Points M and N are the projections of B
and C to AD. The circle with diameter MN intersects BC in points X and Y . Prove that
∠BAX = ∠CAY .

Solution. Let B′, C ′, X ′, Y ′ be the reflections of B, C, X, Y in MN . Then the diagonals
of isosceles trapezoid BB′CC ′ meet at point L, which is the reflection of A in the circle with
diameter MN . The diagonals of isosceles trapezoid XX ′Y Y ′ inscribed into this circle also meet
at L. The lateral sidelines of this trapezoid meet on the polar of L, passing through A and
parallel to the bases of the trapezoid. By symmetry A is the common point of the sidelines,
which implies the assertion of the problem (fig.18).
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Fig.18

19. (D.Prokopenko) a) The incircle of a triangle ABC touches AC and AB at points B0 and C0

respectively. The bisectors of angles B and C meet the perpendicular bisector to the bisector
AL in points Q and P respectively. Prove that the lines PC0, QB0, and BC concur.

b) Let AL be the bisector of a triangle ABC. Points O1 and O2 are the circumcenters of
triangles ABL and ACL respectively. Points B1 and C1 are the projections of C and B to the
bisectors of angles B and C respectively. Prove that the lines O1C1, O1B1, and BC concur.

c) Prove that two points obtained in pp. a) and b) coincide.

Solution. a) It is clear that PQ ∥ B0C0. Also P lies on the circumcircle of ACL. Thus
∠PLA = ∠C/2 and ∠PLB = 90◦ − ∠B/2 = ∠C0A0B, where A0 is the touching point of
the incircle with BC. Therefore the corresponding sidelines of triangles PQL and C0B0A0 are
parallel i.e., these triangles are homothetic (fig.19a). The homothety center S lies on line LA0.
Thus lines P 0 and QB0 meet in S, i.e. on line BC.
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Fig.19а

b) First prove that points C0, B0, C1 and B1 are collinear. In fact, since the reflection of B
in the bisector of angle C lies on AC, point C1 lies on the medial line A′C ′. Also we have
A′C1 = BC/2, and therefore C ′C1 = |AC −BC|/2 = C ′B0. This property defines the common
point of A′C ′ and B0C0. Thus lines O1O2 and C1B1 are parallel. Now quadrilateral BC1IA0 is
cyclic, therefore ∠C1A0B = 90◦ − ∠A/2 = ∠O1LB and A0C1 ∥ LO1. Similarly A0B1 ∥ LO2

(fig.19b). Thus triangles O1O2L and C1B1A0 are homothetic.
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c) Both homotheties of pp. a) and b) transform A0 to L, and line B0C0 to the medial perpendicular
to AL. Therefore their centers coincide.

20. (V.Yassinsky) Let C1 be an arbitrary point on the side AB of triangle ABC. Points A1 and
B1 on the rays BC and AC are such that ∠AC1B1 = ∠BC1A1 = ∠ACB. The lines AA1 and
BB1 meet in point C2. Prove that all the lines C1C2 have a common point.

Solution. By condition, quadrilaterals ACA1C1 and BCB1C1 are cyclic. Thus ∠B1BC1 =
∠ACC1, ∠A1AC1 = ∠BCC1, and therefore ∠AC2B = π−∠C, i.e. C2 lies on the circle passing
through A, B and the reflection C ′ of C wrt AB. Also ∠BC ′C1 = ∠BAC2, thus C ′C1 passes
through C2 (fig.20).
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21. (D.Yassinsky) Let A be a point inside a circle ω. One of two lines drawn through A intersects
ω at points B and C, the second one intersects it at points D and E (D lies between A and E).
The line passing through D and parallel to BC meets ω for the second time at point F , and
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the line AF meets ω at point T . Let M be the common point of the lines ET and BC, and N
be the reflection of A across M . Prove that the circumcircle of triangle DEN passes through
the midpoint of segment BC.

Solution. Firstly, project line AB to the circle from point D, and then project the circle
to AB from point T . As a result we obtain that the image of A is M , the image of infinite
point is A, and points B and C are fixed. From the equality of cross-ratios we obtain that
MB/MC = (AB/AC)2. Hence AM = AB · AC/(AB + AC). Now let K be the midpoint of
BC. Then AN ·AK = 2AM(AB +AC)/2 = AB ·AC = AD ·AE, i.e. points D, E, K, N are
concyclic.

22. (A.Zaslavsky) The common perpendiculars to the opposite sidelines of a nonplanar quadrilateral
are mutually orthogonal. Prove that they intersect.

Solution. Let K, L, M , N be the feet of common perpendiculars lying on the sides AB,
BC, CD, DA of quadrilateral ABCD. The projection to the plane parallel to KM and LN
transforms these lines to perpendicular lines K ′M ′ and L′N ′. By three perpendiculars theorem
the projections of AB and CD are perpendicular to K ′M ′, and the projections of BC and AD
are perpendicular to L′N ′. Therefore the projection of ABCD is a rectangle A′B′C ′D′, and
A′K ′ = D′M ′, B′L′ = A′N ′. Thus AK/KB = DM/MC, BL/LC = AN/ND and by Menelaos
theorem K, L, M , N are complanar.

23. (B.Frenkin) Two convex polytopes A and B do not intersect. The polytope A has exactly 2012
planes of symmetry. What is the maximal number of symmetry planes of the union of A and
B, if B has a) 2012, b) 2013 symmetry planes?

c) What is the answer to the question of p.b), if the symmetry planes are replaced by the
symmetry axes?

Answer. a) 2013. b) 2012. c) 1.

Solution. a) Estimation. The symmetry transposes polyhedrons A and B or fixes each of
them. In the first case it transposes the centroids of polyhedrons, thus the symmetry plane is
the perpendicular bisector of the segment between the centroids. In the second case this plane
is a symmetry plane of both polyhedrons A and B. Thus we have at most 1+2012=2013 planes.
Example. Let A be regular 2012-gonal pyramid. Take a point outside A on its axis and construct
a plane P passing through this point and perpendicular to the axis. Let B the reflection of A
in P . Then all conditions are valid, and P and 2012 symmetry planes of A are the symmetry
planes of the union.

b) Estimation. Since A and B have a distinct number of symmetry planes, they aren’t equal
and can’t be transposed by a symmetry. Thus each symmetry is a symmetry of polyhedron
A, which has only 2012 symmetry planes. Example. Let A be a regular 2012-gonal pyramid.
Take a point outside A on its axis, a plane passing through this point and perpendicular to the
axis, and construct the reflection of the pyramid’s base in this plane. Let B be a prism with
this reflection as the base, disjoint from A. It is clear that B has 2013 symmetry planes: one
of them is parallel to the bases of the prism and equidistant from them and 2012 remaining
planes coincide with the symmetry planes of A.

c) Estimation. Since A and B have a distinct number of symmetry axes they can’t be transposed.
Thus the sought symmetry fixes the centroid of each polyhedron. These centroids don’t coincide
because the polyhedrons are convex. Therefore the symmetry axis coincides with the line joining
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two centroids. Example. Let A be a regular 2011-gonal prism with horizontal bases. Then A
has one vertical and 2011 horizontal symmetry axes. Now let B be a regular 2012-gonal prism
with the same axis, disjoint from A. Then B has 2013 symmetry axes and the union of A and
B has a vertical symmetry axis.
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