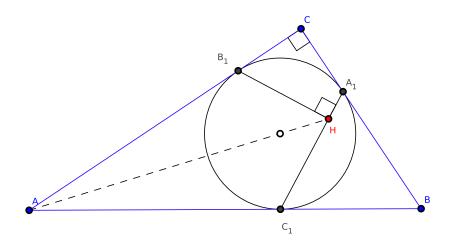
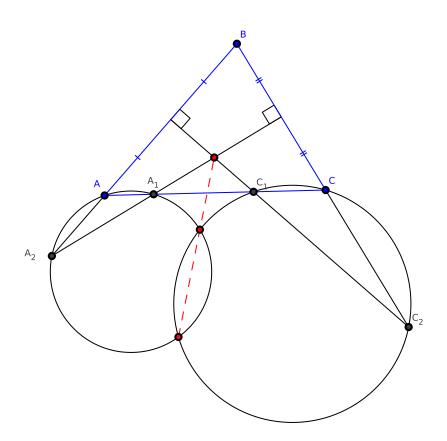
Геометрия регионального тура 2012-2013

9 класс.

Окружность, вписанная в прямоугольный треугольник ABC с гипотенузой AB, касается его сторон BC, AC, AB в точках A_1 , B_1 , C_1 . Пусть B_1H — высота треугольника $A_1B_1C_1$. Докажите, что точка H лежит на биссектрисе угла CAB.

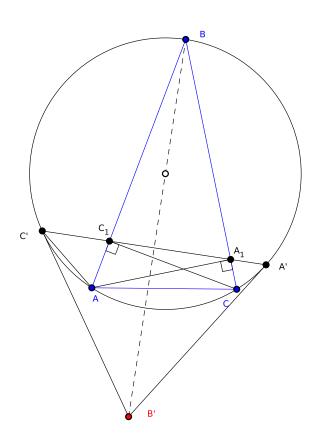


Серединный перпендикуляр к стороне AC остроугольного треугольника ABC пересекает прямые AB и BC в точках B_1 и B_2 , а серединный перпендикуляр к стороне AB пересекает прямые AC и BC в точках C_1 и C_2 . Окружности, описанные около треугольников BB_1B_2 и CC_1C_2 пересекаются в точках P и Q. Доказать, что O, P и Q лежат на одной прямой (O- центр описанной ABC).

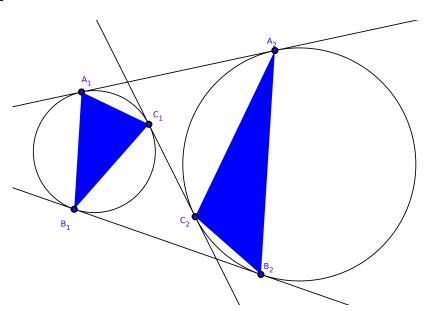


10 класс.

В остроугольном треугольнике ABC проведены высоты AA_1 и CC_1 . Окружность ω , описанная около треугольника ABC, пересекает прямую A_1C_1 в точках A' и C'. Касательные к ω , проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности ω .

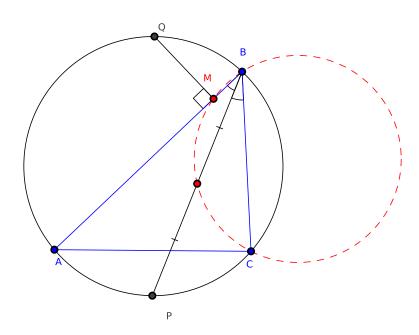


K двум непересекающимся окружностям ω_1 и ω_2 проведены три общие касательные — две внешние, а и b, и одна внутренняя, с. Прямые a, b, с касаются окружности ω_1 в точках A_1 , B_1 , C_1 соответственно, а окружности ω_2 - в точках A_2 , B_2 , C_2 соответственно. Докажите, что отношение площадей треугольников $A_1B_1C_1$ и $A_2B_2C_2$ равно отношению радиусов ω_1 и ω_2 .



11 класс.

B окружность вписан остроугольный треугольник ABC в котром AB > AC. Пусть P и Q — середины меньшей и большей дуг AC соответственно. Пусть M — основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите что окружность, описанная около треугольника BMC, делит пополам отрезок BP.



Три попарно непересекающиеся окружности ω_x , ω_y , ω_z радиусов r_x , r_y , r_z соответственно лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y — середина отрезка XZ, $r_x = r_z = r$, а $r_y > r$. Пусть p — одна из общих внутренних касательных κ окружностям ω_x и ω_y , а q — одна из общих внутренних касательных κ окружностям ω_y и ω_z . В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус вписанной в него окружности равен r.