
VII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. First day. 8th grade. Solutions.

1. (A.Blinkov) The diagonals of a trapezoid are perpendicular, and its altitude is equal to
the medial line. Prove that this trapezoid is isosceles.

First solution. Consider the line passing through C and parallel to BD. Let E be the
common point of this line and the extension of base AD. Then ACE is a right-angled
triangle, thus its median from vertex C is equal to the half of the hypothenuse, i.e. to the
medial line of the trapezoid. By condition, this median coincides with the corresponding
altitude. Hence the diagonals of trapezoid are equal.

Second solution. Let AD, BC be the bases of the trapezoid and O be the common point
of its diagonals. Then the medians of right-angled triangles OAD, OBC are equal to halfs
of their hypothenuses, i.e. the sum of these medians is equal to the medial line. On the
other hand, the altitude of the trapezoid is equal to the sum of altitudes of these triangles.
By the assumption the medians coincide with the altitudes, thus triangles OAD, OBC
are isosceles, and this yields AB = CD.

2. (T.Golenishcheva-Kutuzova) Peter made a paper rectangle, put it on an identical rectangle
and pasted both rectangles along their perimeters. Then he cut the upper rectangle along
one of its diagonals and along the perpendiculars to this diagonal from two remaining
vertices. After this he turned back the obtained triangles in such a way that they, along
with the lower rectangle form a new rectangle.

Let this new rectangle be given. Restore the original rectangle using compass and ruler.

Solution. Let ABCD be the obtained rectangle; O be its center; K, M be the midpoints
of its shortest sides AB and CD; L, N be the meets of BC and AD respectively with the
circle with diameter KM (fig.8.2). Then KLMN is the desired rectangle. In fact, let P
be the projection of M to LN . Since ∠CLM = ∠OML = ∠MLO, the triangles MCL
and MPL are equal. Thus the bend along ML matches these triangles. Similarly the
bend along MN matches triangles MDN and MPN . Finally, since the construction is
symmetric wrt point O, the bend along KL and KN matches triangles BKL and AKN
with triangle NKL.
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3. (A.Myakishev, D.Mavlo) The line passing through vertex A of triangle ABC and parallel
to BC meets the circumcircle of ABC for the second time at point A1. Points B1 and
C1 are defined similarly. Prove that the perpendiculars from A1, B1, C1 to BC, CA, AB
respectively concur.

First solution. Since A1 is the reflection of A in the medial perpendicular to BC, the
perpendicular from A1 is the reflection of the altitude from A. Thus by the Thales theorem
it passes through the reflection of the orthocenter in the circumcenter. The two remaining
perpendiculars also pass through this point.

Second solution. Let K, L and M be a common points of lines AA1, BB1 и CC1 (fig.8.3).
Prove that KC1 is the altitude of triangle KLM . Since KBCA is a parallelogram, and
AC1CB is an isosceles trapezoid, we have KA = BC = AC1, ∠KAB = ∠ABC =
∠BAC1. Therefore AB is the bisector and the altitude of isosceles triangle KAC1. Thus
AB ⊥ KC1, and from this CC1 ⊥ KC1. Similarly LA1 and MB1 are also the altitudes of
triangle KLM . Since the altitudes concur we obtain the assertion of the problem.
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4. (A.Shapovalov) Given the circle of radius 1 and several its chords with the sum of lengths
1. Prove that one can be inscribe a regular hexagon into that circle so that its sides don’t
intersect those chords.

Solution. Paint the smallest arcs corresponding to given chords. If we rotate the painted
arcs in such a way that the corresponding chords form a polygonal line, then the distance
between the ends of it is less than 1, and since a chord with length 1 corresponds to an
arc equal to 1/6 of the circle, the total length of painted arcs is less than 1/6 of the circle.

Now inscribe a regular hexagon into the circle and mark one of its vertices. Rotate the
hexagon, and when the marked vertex coincides with a painted point, paint the points
corresponding to all remaining vertices. The total length of painted arcs increases at most
6 times, therefore there exists an inscribed regular hexagon with non-painted vertices.
Obviously its sides don’t intersect the given chords.
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VII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. Second day. 8th grade. Solutions.

5. (S.Markelov) A line passing through vertex A of regular triangle ABC doesn’t intersect
segment BC. Points M and N lie on this line, and AM = AN = AB (point B lies inside
angle MAC). Prove that the quadrilateral formed by lines AB, AC, BN , CM is cyclic.

Solution. Since triangle BAN is isosceles, ∠ANB = ∠MAB
2

(fig.8.5). Similarly ∠AMC =
∠NAC

2
. Thus the sum of these angles is equal to 60◦, and the angle between lines BN and

CM is equal to 120◦, which yields the assertion of the problem.
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6. (D.Prokopenko) Let BB1 and CC1 be the altitudes of acute-angled triangle ABC, and
A0 is the midpoint of BC. Lines A0B1 and A0C1 meet the line passing through A and
parallel to BC in points P and Q. Prove that the incenter of triangle PA0Q lies on the
altitude of triangle ABC.

First solution. Since triangles BCB1 and BCC1 are right-angled, their medians B1A0,
B1C0 are equal to the half of hypothenuse: B1A0 = A0C = A0B = C1A0. Now ∠PB1A =
∠CB1A0 = ∠B1CA0 = ∠PAC, thus PA = PB1 (fig.8.6.1). Similarly, QA = QC1. Then
the incircle of triangle A0PQ touches its sides in points A, B1, C1, which yields the
assertion of the problem.
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Fig.8.6

Second solution. Let H be the orthocenter of ABC and O be the midpoint of AH.
Then points A0, B1, C1, O lie on the nine-points-circle of ABC, and A0O is the diameter
of this circle. On the other hand, points B1, C1 lie on the circle with diameter AH, thus
this circle coincides with the incircle of APQ (fig.8.6.2).
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7. (A.Akopyan) Let a point M not lying on coordinates axes be given. Points Q and P move
along Y - and X-axis respectively so that angle PMQ is always right. Find the locus of
points symmetric to M wrt PQ.

Solution. By condition, points P , Q, M and the origin O lie on the circle with diameter
PQ. Thus point N symmetric to M wrt PQ also lies on this circle and ∠PON =
∠PMN = ∠PNM = ∠POM (fig.8.7). Then N lies on the line symmetric to OM wrt
the coordinates axes. On the other hand, if N is an arbitrary point of this line and P , Q
are the common points of coordinates axes with circle OMN , then ∠PMN = ∠PON =
∠POM = ∠PNM and ∠PMQ = ∠POQ = ∠PNQ = 90◦, thus M and N are symmetric
wrt PQ.
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Fig.8.7

8. (A.Zaslavsky) Using only the ruler, divide the side of a square table into n equal parts.
All lines drawn must lie on the surface of the table.

Solution. Firstly bisect the side. Find center O of square ABCD as a common point of
its diagonals. Now let point X lie on side BC, Y be a common point of XO and AD, U
be a common point of AX and BY , V be a common point of UC and XY (fig.8.8.1).
Then line BV bisects the bases of trapezoid CY UX. The line passing through O and the
midpoint of CY bisects sides AB and CD.
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Now suppose that two opposite sides are divided into k equal parts. Let us demonstrate
how to divide it into k + 1 equal parts. Let AX1 = X1X2 = · · · = Xk−1B, DY1 =
Y1Y2 = · · ·Yk−1C. Then by Thales theorem, lines AY1, X1Y2, . . . , Xk−1C divide diagonal
BD into k + 1 equal parts (fig.8.8.2). Dividing similarly the second diagonal and joining
the corresponding points by the lines parallel to BC we divide side AB into k + 1 equal
parts.
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VII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. First day. 9th grade. Solutions.

1. (M.Kungozhin) Altitudes AA1 and BB1 of triangle ABC meet in point H. Line CH
meets the semicircle with diameter AB, passing through A1, B1, in point D. Segments
AD and BB1 meet in point M , segments BD and AA1 meet in point N . Prove that the
circumcircles of triangles B1DM and A1DN touch.
Solution. The angle between the tangent to circle B1DM in point D and line AD is
equal to angle MB1D, which in its turn is equal to angle BAD (fig.9.1). Similarly the
angle between the tangent to circle A1DN and line BD is equal to angle ABD. Since
∠BAD + ∠ADB = 90◦ = ∠ADB, these tangents coincide.

A B

C

A1

B1

D

M

N
H

Fig.9.1

2. (D.Cheian) In triangle ABC, ∠B = 2∠C. Points P and Q on the medial perpendicular
to CB are such that ∠CAP = ∠PAQ = ∠QAB = ∠A

3
. Prove that Q is the circumcenter

of triangle CPB.
Solution. Let D be the reflection of A in the medial perpendicular to BC. Then ABCD
is the isosceles trapezoid and its diagonal BD is the bisector of angle B. Thus CD =
DA = AB. Now ∠DAP = ∠C +∠A/3 = (∠A+∠B+∠C)/3 = 60◦. Thus triangle ADP
is equilateral and AP = AB. Since AQ is the bisector of angle PAB, QP = QB = QC
(fig.9.2).
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Fig.9.2

3. (A.Karluchenko) Restore the isosceles triangle ABC (AB = AC) if the common points
I, M , H of bisectors, medians and altitudes respectively are given.

Solution. Circumcenter O of the triangle lies on the extension of HM beyond point M ,
and MO = HM/2. Now BI, CI are the bisectors of angles OBH, OCH (∠CBH =
∠ABO = π/2 − ∠C). Thus BO/BH = CO/CH = IO/IH, i.e. points B, C lie on the
Apollonius circle of points O and H passing through I. But the circumcenter of triangle
BIC lies on the circumcircle of ABC. So we obtain the following construction.

Construct point O and the Apollonius circle. Now construct the circle with center O
passing through the center of constructed circle. These two circles meet in points B, C,
and line OH again meets the circle with center O in point A.

4. (A.Zaslavsky) Quadrilateral ABCD is inscribed into a circle with center O. The bisectors
of its angles form a cyclic quadrilateral with circumcenter I, and its external bisectors
form a cyclic quadrilateral with circumcenter J . Prove that O is the midpoint of IJ .

Solution. Let the bisectors of angles A and B, B and C, C and D, D and A meet in
points K, L, M , N respectively (fig.9.4). Then line KM bisects the angle formed by lines
AD and BC. If this angle is equal to ϕ, then by external angle theorem we obtain that
∠LKM = ∠B/2−ϕ/2 = (π−∠A)/2 = ∠C/2 and thus ∠LIM = ∠C. On the other hand,
the perpendiculars from L and M to BC and CD respectively form the angles with ML
equal to (π−∠C)/2, i.e. the triangle formed by these perpendiculars and ML is isosceles
and the angle at its vertex is equal to C. Thus the vertex of this triangle coincides with
I. So the perpendiculars from the vertices of KLMN to the corresponding sidelines of
ABCD pass through I. Similarly the perpendiculars from the vertices of triangle formed
by external bisectors pass through J .
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Fig.9.4

Now let K ′ be the common point of external bisectors of angles A and B. Since quadrilateral
AKBK ′ is inscribed into the circle with diameter KK ′, the projections of K and K ′ to AB
are symmetric wrt the midpoint of AB. From this and the above assertion, the projections
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of I and J to each side of ABCD are symmetric wrt the midpoint of this side, and this
is equivalent to the sought assertion.

Note. The similar property of a triangle is well-known: the circumcenter is the midpoint of
the segment between the incenter and the circumcenter of the triangle formed by external
bisectors.
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VII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. Second day. 9th grade. Solutions.

5. (B.Frenkin) It is possible to compose a triangle from the altitudes of a given triangle. Can
we conclude that it is possible to compose a triangle from its bisectors?

Solution. No. Consider a triangle with two sides equal to 2 and 3 and increase the angle
between these sides. When the angle approaches to 180◦ the ratio of altitudes of triangle
approaches to 1/2 : 1/3 : 1/5, thus for any value of the angle it is possible to compose
the triangle from the altitudes. On the other hand, the smallest bisector approaches to
zero, and two remaining bisectors approach to different values. Thus for great values of
the angle it is impossible to compose the triangle from the bisectors.

Let us present the exact estimates. Firstly note that if a and b are two sides of a triangle,
C is the angle between these sides, and lc is the bisector of this angle, then the area of
the triangle is equal to S = ab sinC/2 = (a+ b)lc sin

C
2
/2, thus lc = 2ab cos C

2
/(a+ b). The

lengths of bisectors la, lb are determined similarly.

Now let a = 2, b = 3. Then cos A
2
> cos B

2
. Thus

la − lb > 2c cos
A

2

(
b

b+ c
− a

a+ c

)
=

2c2 cos A
2

(c+ 2)(c+ 3)
.

Take angle C sufficiently great such that c > 4, cos A
2
> 0, 9, cos C

2
< 0, 1. Then la− lb > lc

and it is impossible to compose a triangle from the bisectors. On the other hand, we have
hb/ha = 2/3, 2/5 < hc/ha < 1/2. Thus hb + hc > ha > hb > hc and it is possible to
compose a triangle from the altitudes.

6. (P.Dolgirev) In triangle ABC AA0 and BB0 are medians, AA1 and BB1 are altitudes.
The circumcircles of triangles CA0B0 and CA1B1 meet again in point Mc. Points Ma, Mb

are defined similarly. Prove that points Ma, Mb, Mc are collinear and lines AMa, BMb,
CMc are parallel.

Solution. Let O and H be the circumcenter and the orthocenter of triangle ABC. Since
∠CA0O = ∠CB0O = ∠CA1H = ∠CB1H = 90◦, CO and CH are the diameters of circles
CA0B0 and CA1B1 respectively. Thus the projection of point C to line OH lies on both
circles, i.e. coincides with Mc (fig.9.6). This yields the assertion of the problem
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Fig.9.6
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7. (I.Bogdanov) Circles ω and Ω are inscribed into the same angle. Line ℓ meets the sides of
angles, ω and Ω in points A and F , B and C, D and E respectively (the order of points
on the line is A,B,C,D,E, F ). It is known that BC = DE. Prove that AB = EF .

First solution. Let one side of the angle touch ω and Ω in points X1, Y1, and the
second side touch them in points X2, Y2; U , V are the common points of X1X2 and
Y1Y2 with AF . The midpoint of CD lies on the radical axis of the circles, i.e. the medial
line of trapezoid X1Y1Y2X2, thus BU = EV and CU = DV (fig.9.7). This yields that
X1U · X2U = Y1V · Y2V . Hence FY2/FX2 = Y2V/X2U = X1U/Y1V = AX1/AY1, i.e.
AX1 = FY2. Now from AB · AC = AX2

1 = FY 2
2 = FE · FD we obtain the assertion of

the problem.
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Fig.9.7

Second solution. Prove that there exists exactly one line passing through a fixed point
A on a side of the angle which satisfies the condition of the problem. In fact, the distances
from the midpoint K of segment CD to the projections of the centers of the circles to
the sought line are equal, thus K coincides with the projection of the midpoint L of the
segment between the centers. Hence K is the common point of the circle with diameter
AL and the radical axis, distinct from the midpoint of segment X1Y1. On the other hand,
if F is a point such that AX1 = Y2F then AB ·AC = FE ·FD and AD ·AE = FC ·FB,
thus AF is the sought line.

8. (B.Frenkin) A convex n-gon P , where n > 3, is dissected into equal triangles by diagonals
non-intersecting inside it. Which values of n are possible, if P is circumscribed?

Solution. Let us prove that n = 4.

Lemma. Let a convex polygon be dissected into equal triangles by non-intersecting
diagonals. Then each triangle of the dissection has at least one side which is a side (not
a diagonal) of the polygon

Proof. Let a triangle of the dissection have angles α ≤ β ≤ γ; A,B,C be the corresponding
vertices, AC and BC be the diagonals of the polygon. There are at least two another
angles of dividing triangles adjacent to C. If one of them is greater than α, then the sum
of angles adjacent to C is not less than γ+β+α = π, but this sum can’t be greater than
an angle of convex polygon, a contradiction. Thus all angles in vertex C, except ∠ACB
are equal to α and α < β.

Consider the second triangle adjacent to BC. Since it is equal to △ABC, its angle opposite
to BC is equal to α. But angle C also is equal to α although it must be β or γ, a
contradiction. Lemma is proved.
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Now we turn to the solution of the problem.

Since the sum of angles of P is equal to π(n−2) the number of dividing triangles is equal
to n− 2. By lemma, each of these triangles has at least one side coinciding with a side of
P . Hence there are two triangles having two sides coinciding with sides of P .

Let KLM be one of these triangles, KL and LM be the sides of P . KM is the side
of another dissection triangle KMN . One of its sides (for example KN) is a side of P .
Since the triangles are equal, ∠NKM is equal to ∠LKM , or to ∠KML. In the first
case KM bisects the angle P and so passes through the incenter I. In the second case
KN ∥ LM . Then I lies on the common perpendicular to these two segments, thus it lies
inside parallelogram KLMN , i.e. belongs to at least one of triangles KLM, KMN .

Let K ′L′M ′ be the second triangle with two sides coinciding with sides of P . Similarly
we obtain that I lies inside this or adjacent dissection triangle. If I lies inside one of
triangles KLM, K ′L′M ′, then they are adjacent and n = 4. In the opposite case I lies
inside triangle KMN which is adjacent to both these triangles. Then MN is a side of
△K ′L′M ′; let M = M ′, N = K ′. As above we obtain that LM ∥ KN ∥ L′M . But then
sides LM and L′M of the convex polygon lie on the same line, a contradiction.

>From the above argument we see that a convex quadrilateral satisfies the condition of
the problem iff it is symmetric wrt one of its diagonals.
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VII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. First day. 10th grade. Solutions.

1. (M.Rozhkova) In triangle ABC the midpoints of sides AC, BC, vertex C and the centroid
lie on the same circle. Prove that this circle touches the circle passing through A, B and
the orthocenter of triangle ABC.

Solution. Let point C ′ be the reflection of C in the midpoint of AB. Then points A,
B, C ′ and the orthocenter of ABC lie on the same circle. On the other hand, if A0, B0

are the midpoints of BC, AC, then triangle A0B0C is homothetic to triangle ABC ′ wrt
cenroid M of ABC with coefficient −1/2. Thus the circumcircles of these triangles touch
in M (fig.10.1).

A B

C

A0B0
M

H

C ′

Fig.10.1

2. (L.Emelyanov) Quadrilateral ABCD is circumscribed. Its incircle touches sides AB, BC,
CD, DA in points K, L, M , N respectively. Points A′, B′, C ′, D′ are the midpoints of
segments LM , MN , NK, KL. Prove that the quadrilateral formed by lines AA′, BB′,
CC ′, DD′ is cyclic.

Solution. Let us begin with the assertion which follows from a simple calculation of
angles.

Lemma. Points A, B, C, D lie on the same circle iff the bisectors of angles formed by
lines AB and CD are parallel to the bisectors of angles formed by lines AD and BC.

In fact, consider the case when ABCD is a convex quadrilateral, rays BA and DC meet
in point E, rays DA and BC meet in point F . Then the angles between the bisectors
of angles BED and BFD are equal to half-sums of opposite angles of the quadrilateral.
This clearly yields the assertion of lemma. Another cases can be considered similarly.

Now let us turn to the solution of the problem. Let I be the incenter of ABCD, r be
the radius of its incircle. Then IC ′ · IA = r2 = IA′ · IC, i.e. points A, C, A′, C ′ lie on
the circle. By lemma, the bisectors of angles between AA′ and CC ′ are parallel to the
bisectors of angles between IA and IC, and hence to the bisectors of the angles between
perpendicular lines KN and LM . Similarly the bisectors of the angles between BB′ and
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DD′ are parallel to the bisectors of the angles between KL and MN . Using again the
lemma we obtain the assertion of the problem.

3. (A.Akopyan) Given two tetrahedrons A1A2A3A4 and B1B2B3B4. Consider six pairs of
edges AiAj and BkBl, where (i, j, k, l) is a transposition of numbers (1, 2, 3, 4) (for
example A1A2 and B3B4). It is known that for all but one such pairs the edges are
perpendicular. Prove that the edges in the remaining pair also are perpendicular.

Solution. Let us prove firstly the following lemma.

Lemma. Edges A1A2 and B3B4 are perpendicular iff the perpendiculars from points A1,
A2 to planes B2B3B4 and B1B3B4 respectively intersect.

Proof of Lemma. Let A1A2 ⊥ B3B4. Then there exists a plane passing through A1A2

and perpendicular to B3B4. The perpendiculars from the condition of Lemma lie on
this plane and hence intersect. Conversely, if the perpendiculars intersect then the plane
containing them is perpendicular to B3B4 and passes through A1A2.

Now let A1A2 ⊥ B3B4, A1A3 ⊥ B2B4, A2A3 ⊥ B1B4. Then any two of three perpendiculars
from A1, A2, A3 to the corresponding faces of B1B2B3B4 intersect. Since these three
perpendicular aren’t complanar, this yields that they have a common point. Thus if the
condition of the problem is true then all four perpendiculars from the vertices of one
tetrahedron to the corresponding faces of the other have a common point and the edges
in the sixth pair are perpendicular.

4. (V.Mokin) Point D lies on the side AB of triangle ABC. The circle inscribed in angle
ADC touches internally the circumcircle of triangle ACD. Another circle inscribed in
angle BDC touches internally the circumcircle of triangle BCD. These two circles touch
segment CD in the same point X. Prove that the perpendicular from X to AB passes
through the incenter of triangle ABC.

Solution. Firstly prove next lemma.

Lemma. Let a circle touch sides AC, BC of triangle ABC in points U , V and touch
internally its circumcircle in point T . Then line UV passes through the incenter I of
triangle ABC.

Proof of Lemma. Let lines TU , TV intersect the circumcircle again in points X, Y .
Since circles ABC and TUV are homothetic with center T , points X, Y are the midpoints
of arcs AC, BC, i.e. lines AY and BX meet in point I (fig.10.4.1). Thus the assertion of
the lemma follows from Pascal theorem applied to hexagon AY TXBC.

13
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>From lemma and the condition of the problem we obtain that DI1XI2, where I1, I2 are
the incenters of triangles ACD, BCD, is the rectangle (fig.10.4.2.). Let Y , C1, C2 be the
projections of points X, I1, I2 to AB. Then BY − AY = BC2 + C2Y − AC1 − C1Y =
(BC2 −DC2)− (AC1 −DC1) = (BC − CD)− (AC − CD) = BC − AC. Thus Y is the
touching point of AB with the incircle.

DC1 C2Y

I1 I2

X

Fig.10.4.2
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VII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. Second day. 10th grade. Solutions.

5. (A.Blinkov) The touching point of the excircle with the side of a triangle and the base of
the altitude to this side are symmetric wrt the base of the corresponding bisector. Prove
that this side is equal to one third of the perimeter.

Solution. By condition the radius rc of the excircle touching side AB of triangle ABC
is equal to altitude hc. Since the square of the triangle equals S = (p− c)rc = chc/2, we
have c = 2(p− c) = 2p/3.

6. (M.Rozhkova) Prove that for any nonisosceles triangle l21 >
√
3S > l22, where l1, l2 are the

greatest and the smallest bisectors of the triangle and S is its area.

Solution. Let a > b > c be the sidelengths of the triangle. Then l2 is the bisector of angle
A and S = bc sinA/2 = (b+ c)l2 sin

A
2
/2. Thus we can write down the right inequality as√

3(b + c) sin A
2
/2 > 2bc cos A

2
/(b + c) or

√
3 tg A

2
> 4bc/(b + c)2. But π/6 < A/2 < π/2,

thus the left part is greater than 1, and the right part is less than 1 by Cauchy inequality.

Since C < π/3, we have
√
3S < 3ab/4. On the other hand l21 = 4a2b2 cos2 C

2
/(a + b)2 =

2a2b2(1+cosC)/(a+ b)2. Since b > c, we have cosC > a/2b and l21 > a2b(a+2b)/(a+ b)2.
Thus the left inequality follows from a(a+ 2b)/(a+ b)2 = 1− b2/(a+ b)2 > 3/4.

7. (G.Feldman) Point O is the circumcenter of acute-angled triangle ABC, points A1,
B1, C1 are the bases of its altitudes. Points A′, B′, C ′ lying on lines OA1, OB1, OC1

respectively are such that quadrilaterals AOBC ′, BOCA′, COAB′ are cyclic. Prove that
the circumcircles of triangles AA1A

′, BB1B
′, CC1C

′ have a common point.

Solution. Let H be the orthocenter of ABC. Then AH ·HA1 = BH ·HB1 = CH ·CH1,
i.e the degrees of point H wrt circles AA1A

′, BB1B
′, CC1C

′ are equal and H lies inside
these circles. On the other hand ∠BC ′O = ∠BAO = ∠OBC1, i.e. triangles OC ′B and
OBC1 are similar and OC1 · OC ′ = OB2

0 (fig.10.7). Thus the degrees of point O wrt all
three circles are also equal, so these circles meet in two points lying on line OH.

A
B

C

O

C1

C ′

Fig.10.7

8. (S.Tokarev) Given a sheet of tin 6× 6. It is allowed to bend it and to cut it but in such a
way that it doesn’t fall to pieces. How to make a cube with edge 2, divided by partitions
into unit cubes?
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Solution. The sought development is presented on Fig.10.8. Bold lines describe the cuts,
thin and dotted lines describe the bends up and down. The central 2×2 square corresponds
to the horizontal partition of the cube.

 Fig.10.8.
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