
VIII Geometrical Olympiad in honour of I.F.Sharygin

Final round. First day. 8th form. Solutions

1. (A.Blinkov) Let M be the midpoint of the base AC of an acute-angled isosceles trian-
gle ABC. Let N be the re�ection of M in BC. The line parallel to AC and passing
through N meets AB at point K. Determine the value of ∠AKC.

Answer. 90◦.

Solution. Let L be the common point of NK and BC (see Fig. 8.1). By means of
the symmetry in BC we obtain AM = MC = CN and ∠MCB = ∠NCB. Next,
since LN ∥ AC, we have ∠CNL = ∠LCM , hence the triangle CNL is isosceles, and
LN = CN = AM . Thus, the segments AM and LN are parallel and equal, hence the
quadrilateral ALNM is a parallelogram, and AL ∥ MN ⊥ LC. Finally, by the symmetry
in BM we get ∠AKC = ∠ALC = 90◦.
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2. (A.Karlyuchenko) In a triangle ABC the bisectors BB′ and CC ′ are drawn. After that,
the whole picture except the points A, B′, and C ′ is erased. Restore the triangle using a
compass and a ruler.

First solution. Let I be the incenter of triangle ABC. Then ∠B′IC ′ = 180◦−(∠IBC+
∠ICB) = 90◦ + 1

2
∠B′AC ′. So, denoting by O the center of the circumcircle ω of trian-

gle BCI, we get ∠B′OC ′ = 180◦ − ∠B′AC ′. Hence one can successively reconstruct
points O and I (the latter is the meeting point of the smaller arc B′C ′ of ω with the
bisector of ∠B′AC ′, see Fig. 8.2). Finally, the points B and C can be reconstructed and
the meeting points of B′I, AC ′ and C ′I, AB′ respectively.

Second solution. Since BB′ is the bisector of ∠B, the point B′ is equidistant from the
lines BC and AB. Hence the circle with center B′ tangent to AC ′ is also tangent to BC.
Analogously, line BC is tangent to the circle with center C ′ touching AB′ (see Fig. 8.2).
So, to reconstruct the points B and C, it is su�cient to draw a common outer tangent to
these two circles (sharing di�erent sides of B′C ′ with A) and to �nd its common points
with AB′ and AC ′.

3. (L.Steingarts) A paper square was bent by a line in such way that one vertex came to a
side not containing this vertex. Three circles are inscribed into three obtained triangles
(see Figure). Prove that one of their radii is equal to the sum of the two remaining ones.

Solution. Assume that square ABCD is bent by line XY ; denote the resulting points as
in Fig. 8.3.2. Recall that in any right triangle, the incenter, the points of tangency of the
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incircle with the legs, and the vertex of the right angle form a square; hence the inradius
is equal to the segment of the tangent line from that vertex. Hence the indiameters of
triangles UDX, UAP , and PV Y are d1 = UD +DX −XU , d2 = UA+ AP − UP , and
d3 = PV + V Y − PY respectively. Denote a = AB and notice that UX = XC and
V Y = Y B; therefore we obtain

d1+d3−d2 = DU+(a−CX)−CX+PV+BY−PY−(a−DU)−(a−PY−BY )+(a−PV ) =

= 2(DU +BY − CX).
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Figure 8.3.1 Figure 8.3.2

Let K be the projection of Y onto CD. The points C and U are symmetrical with
respect to XY , hence XY ⊥ CU , and ∠DCU = ∠KYX. Moreover, KY = CD = a.
Consequently, the right triangles CDU and Y KX are congruent, hence DU = KX =
CX − CK = CX −BY . This means exactly that d1 + d3 − 2d = 0.

Remark. In the �rst part of the solution, one may also argue as follows. The right
triangles DXY , V Y P , and AUP are similar; hence the ratios of their inradii are the same
as the ratios of their respective legs. Hence it su�ces to prove the equality DX + V Y =
AU , or, equivalently, DX + CK = a − DU . The last relation follows from the relation
DU = KX which is proved in the second part of the Solution.

4. (A.Akopyan, D.Shvetsov) Let ABC be an isosceles triangle with ∠B = 120◦. Points
P and Q are chosen on the prolongations of segments AB and CB beyond point B so
that the rays AQ and CP intersect and are perpendicular to each other. Prove that
∠PQB = 2∠PCQ.
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Figure 8.4

Solution. Let us choose points X and Q′ on ray BC so that BX = BP and BQ′ =
BP + BQ. Then triangle BPX is isosceles, and one of its angles is equal 60◦; hence
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it is equilateral, so PX = BP and ∠PXQ′ = 120◦. Then triangles PBQ and PXQ′

are congruent by SAS, hence PQ′ = PQ and ∠PQ′B = ∠PQB. Analogously, choosing
point P ′ on ray BA so that BP ′ = BP + BQ, we get QP ′ = QP and ∠QP ′B = ∠QPB
(see Fig. 8.4).

Now let us prolongate segments BP ′ and BQ′ beyond the points P ′ and Q′ by the length
Q′A′ = P ′C ′ = PQ. Then we have BA′ = BP ′+P ′A′ = BP +BQ+PQ = BQ′+Q′C ′ =
BC ′. Now, triangles QP ′A′ and PQ′C ′ are isosceles, so ∠P ′A′Q+∠Q′C ′P = 1

2
(∠QP ′B+

∠PQ′B) = 1
2
(∠BPQ+∠BQP ) = 30◦. Hence the angle formed by the lines QA′ and PC ′

is equal to 180◦− (∠P ′A′Q+∠Q′C ′P +∠BA′C ′+∠BC ′A′) = 90◦. But, if BA′ = BC ′ <
BA, then this angle should be less than 90◦, and if BA′ > BA, then it should be greater
than 90◦, So we obtain A′ = A, C ′ = C, and ∠PQB = ∠PQ′B = 2∠PCQ′, QED.
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VIII Geometrical Olympiad in honour of I.F.Sharygin

Final round. Second day. 8th form. Solutions

5. (A.Akopyan) Do there exist a convex quadrilateral and a point P inside it such that the
sum of distances from P to the vertices of the quadrilateral is greater than its perimeter?

Answer. Yes.

Solution. Consider a quadrilateral ABCD such that AD = BD = CD = x, AB =
BC = y < x/4, and a point P on the diagonal BD such that PD = y (see Fig. 8.5).
Then we have PB + PD = BD = x and PA = PC > AD − PD = x − y, hence
PA+ PB + PC + PD > 3x− 2y > 2x+ 2y = AB +BC + CD +DA.
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6. (A.Tumanyan) Let ω be the circumcircle of triangle ABC. A point B1 is chosen on the
prolongation of side AB beyond point B so that AB1 = AC. The angle bisector of ∠BAC
meets ω again at point W . Prove that the orthocenter of triangle AWB1 lies on ω.

Solution. Let H be the second point of intersection of line CB1 with ω. Since AW is an
angle bisector in the isosceles triangle AB1C, we have B1H ⊥ AW . If the points C andW
share a common side of AH, then ∠AWH = ∠ACH = 90◦ − ∠CAW = 90◦ − ∠WAB,
which implies WH ⊥ AB1 (see Fig. 8.6). If they share di�erent sides, then ∠AWH =
180◦ −∠ACH = 90◦ +∠WAB, which again follows WH ⊥ AB1. Finally, if these points
coincide, then triangle AWB1 is right-angled, and H = W is its orthocenter.

Thus, in any case point H lies on two altitudes of triangle AWB1; hence H is its ortho-
center.

7. (D.Shvetsov) The altitudes AA1 and CC1 of an acute-angled triangle ABC meet at
point H. Point Q is the re�ection of the midpoint of AC in line AA1; point P is the
midpoint of segment A1C1. Prove that ∠QPH = 90◦.

First solution. Let K be the midpoint of AC. Since KQ ∥ BC, the line KQ bisects
the altitude AA1. So, the diagonals of quadrilateral AKA1Q bisect each other and are
perpendicular to each other, thus this quadrilateral is a rhombus. Moreover, from the
symmetry we have HQ = HK.

Analogously, let R be the re�ection of K in CC1; then CKC1R is a rhombus, and HQ =
HR (see Fig. 8.7.1). So the segments A1Q, AK, KC, and C1R are parallel and equal,
hence QA1RC1 is a parallelogram, and P is a midpoint of RQ. Consequently, HP is a
median, and thus an altitude, in the isosceles triangle HQR, QED.
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Second solution. Let L be the midpoint of AA1. Then PL is a midline in the trian-
gle AA1C1, so ∠PLH = ∠BAA1, and hence ∠PLQ = 90◦ − ∠PLH = ∠C1HA. On
the other hand, points A1 and C1 lie on the circle with diameter AC; therefore the tri-
angles A1C1H and CAH are similar; hence the two angles ∠PHC1 and ∠KHA formed
by their respective sides and medians are equal. Thus, ∠QHA = ∠KHA = ∠PHC1,
therefore ∠PHQ = ∠C1HA (see Fig. 8.7.2). So, ∠PHQ = ∠C1HA = ∠PLQ, which
implies that the points P , Q, L, and H are concyclic, and ∠QPH = 180◦−∠QLH = 90◦.

8. (A.Zaslavsky) A square is divided into several (greater than one) convex polygons with
mutually di�erent numbers of sides. Prove that one of these polygons is a triangle.

Solution. Suppose that a square is cut into n polygons. Then each of these polygons has
at most one side lying on each side of the square; next, it shares at most one side with
any of the other polygons. So the total number of its edges is at most 4+(n−1) = n+3.

Thus, the number of sides of any polygon lies in the interval [3, n+3]. If none of them is
a triangle, then the numbers of sides should be equal to 4, 5, . . . , n + 3. So, there exists
an n + 3-gon, and it should share a segment with every side of the square. Therefore,
any other polygon can share the segments with at most two sides of the square, and the
number of its sides is at most 2 + (n − 1) = n + 1. Hence there is no (n + 2)-gon; a
contradiction.
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VIII Geometrical Olympiad in honour of I.F.Sharygin

Final round. First day. 9th form. Solutions

1. (L.Steingarts) The altitudes AA1 and BB1 of an acute-angled triangle ABC meet at
point O. Let A1A2 and B1B2 be the altitudes of triangles OBA1 and OAB1 respectively.
Prove that A2B2 is parallel to AB.

Solution. By ∠CAA1 = 90◦ − ∠ACB = ∠CBB1, the right triangles OA1B and OB1A
are similar (see Fig. 9.1). So, their altitudes A1A2 and B1B2 divide the sides OB and OA
in the same ratio. This exactly means that A2B2 ∥ AB.
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Figure 9.1 Figure 9.2

2. (D.Shvetsov, A.Zaslavsky) Three parallel lines passing through the vertices A, B, and
C of triangle ABC meet its circumcircle again at points A1, B1, and C1 respectively.
Points A2, B2, and C2 are the re�ections of points A1, B1, and C1 in BC, CA, and AB
respectively. Prove that the lines AA2, BB2, CC2 are concurrent.

Solution. Let a, b, and c be the lines drawn through the points A1, B1 and C1 and
parallel to BC, CA, and AB respectively. We claim that these lines are concurrent, and
their concurrency point lies on the circumcircle of ABC. Let c intersect the circumcircle
at C1 and P (if c is tangent to the circumcircle, then P = C1). Then from AB ∥ C1P
and AA1 ∥ CC1 we obtain ⌣ BP =⌣ C1A =⌣ A1C (here, by ⌣ XY we denote the
measure of the arc passing from X toY clockwise). This means exactly that A1P ∥ BC,
hence a passes through P . Analogously, b also passes through P (see Fig. 9.2).

Next, the points C1 and P are symmetrical in the perpendicular bisector of AB, while
the points C1 and C2 are symmetrical in AB; this implies that the points P and C2

are symmetrical about the midpoint C0 of the segment AB. Analogously, the points A2

and B2 are symmetrical to P about the midpoints A0 and B0 of the other two sides

of ABC. Thus,
−−−→
A2B2 = 2

−−−→
A0B0 = −

−→
AB and analogously

−−−→
A2C2 = −

−→
AC,

−−−→
B2C2 = −

−−→
BC.

Therefore the triangles ABC and A2B2C2 are centrally symmetric to each other, and the
lines connecting their respective vertices are concurrent at the symmetry center.

3. (V.Protasov) In triangle ABC, the bisector CL was drawn. The incircles of triangles CAL
and CBL touch AB at points M and N respectively. Points M and N are marked on the
picture, and then the whole picture except the points A, L, M , and N is erased. Restore
the triangle using a compass and a ruler.
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First solution. Let K be the tangency point of the incircle of ABC with the side AB
(clearly, point K lies on the segment MN). Notice that

MK = AK − AM =
AB + AC −BC

2
− AL+ AC − LC

2
=

BL+ LC −BC

2
= LN.

Next, let Ia, Ib, and I be the centers of the incircles ωa, ωb, and ω of triangles ACL,

BCL, and ABC respectively. By the angle bisector property, we get
AL

IL
=

AIa
IaI

=
AM

MK
,

so IL =
AL ·MN

AM
.

Now we are ready to restore the triangle. It is easy to reconstruct successively points X,
I (as the meeting point of the perpendicular to MN at K and a circle with center L),
then Ia and Ib (as the meeting points of the bisectors of ∠ALI and ∠CLI with the
perpendiculars to segment MN at its endpoints), then the circles ωa and ωb and, �nally,
the points C (the intersection of the tangents to ωa drawn from A and L) and B (as the
intersection of MN with a tangent to ωb from C).

A B

C

KLM N

I
Ia Ib

Figure 9.3

Second solution. First, let us prove the relation 1/AM + 1/ML = 1/LN + 1/NB.
Denote by x = AC, y = CL, z = LA the side lengths of triangle ACL, by p, S, and
r its semiperimeter, area, and inradius respectively, and by h the distance from C to

line AB. Then we have
1

AM
+

1

ML
=

1

p− y
+

1

p− x
=

z

(p− x)(p− y)
. Next, by the

Äàëåå, (p − x)(p − y) =
S2

p(p− z)
=

rp · zh/2
p(p− z)

, which implies
1

AM
+

1

ML
=

2(p− z)

rh
=

2

h tan(∠ACL/2)
. Now notice that in the triangle BCL, the angle at C is the same, hence

the value of 1/LN + 1/NB is the same.

Thus, knowing the lengths of segments AM , ML, and LN , we may reconstruct the length
of NB and hence the point B. Further, from the relations AC − CL = AM − LM and
BC − CL = BN − LN we get the di�erence AC − BC = AM − LM − BN + LN = p
of AC and BC, while the relation AC/BC = AL/BL = q provides their ratio. Now it

is easy to �nd the side lengths AC =
p

q − 1
and BC =

pq

q − 1
, and to reconstruct the

triangle.

4. (B.Frenkin) Determine all integer n > 3 for which a regular n-gon can be divided into
equal triangles by several (possibly intersecting) diagonals.

Answer. All even n.
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First solution. If n = 2k, then one may draw k main diagonals cutting the polygon into
n congruent triangles.

Assume now that such cutting exists for some odd n. Consider the obtained triangles
sharing a side with the initial n-gon P . All their angles opposite to these sides are equal;
denote their value by α, and denote two other angles of an obtained triangle by β and γ.
Two cases are possible.

Case 1. Assume that the angles β and γ are di�erent, say, β < γ. We call a side of n-gon
β-side or γ-side according to the angle of the triangle at its left endpoint (if observing
from the center of P ). Choose any β-side b, and consider the other side of angle β in the
triangle adjacent to b. This side belongs to some diagonal of P , and the other endpoint
of this diagonal also forms angle β with some side c of P (see Fig. 9.4.1). This angle β
cannot be cut into some smaller angles, otherwise the angle adjacent to c is smaller than β;
but it should be equal either to β or to γ > β, which is impossible.

Thus, this angle β belongs to a triangle with c as its side, and c is a γ-side; let us put b
and c into correspondence. Conversely, considering angle β adjacent to any γ-side c we
analogously �nd a β-side b corresponding to it. Thus all the sides are split into pairs, and
their total number is even. A contradiction.

β

β

γ

γ

b

c

A B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Figure 9.4.1 Figure 9.4.2

Case 2. Assume now that β = γ, and consider a triangle ABC containing the �bottom�
side AB of P ; its angle at C is α. The angle vertical to it is also α and belongs to some
di�erent triangle, whose side opposite to C is equal and parallel to AB. On the other
side of it we �nd another triangle, and so on. Thus we obtain some chain of triangles (see
Fig. 9.4.2); consider the last triangle UVW in this chain. If its orientation is di�erent
from that of ABC, then its top side (which is parallel to AB) is also a side of P , which
is impossible for odd n (a regular n-gon has no parallel sides). Otherwise, the angle
at the top vertex W is α, and W is a vertex of P . Then the sides UV and VW are
(simultaneously) either sides of P or parts of its diagonals. In the �rst subcase we get
α = β = γ = 60◦, so the angle of n-gon is 60◦, which is impossible since n > 3. In
the second subcase, the angle of P contains (as minimum) the angle equal to α and two
angles equal β (adjacent to the sides sharing the vertex W ); thus α + 2β < 180◦. But
α + 2β = 180◦ as the sum of three angles of a triangle; a contradiction.

Second solution. Here we present a di�erent proof that the cutting is impossible for all
odd n > 3.

Notice that no two diagonals are perpendicular to each other; hence for any internal meet-
ing point of two drawn diagonals, there should exist the third diagonal passing through
that point: otherwise these diagonals form two di�erent angles which sum up to 180◦;
but they should be equal to two angles of some triangle.
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Next, we claim that at least two diagonals should pass through each vertex of P . Assume
�rst that through some vertex, no diagonals are drawn. Then the triangle containing this
vertex is a triangle formed by three consecutive vertices of P , and one of its angles is the
angle of P . Then it is easy to see that every side of P belongs to some triangle which
also contains one more side of P . Hence the sides are paired up, which is absurd.

Assume now that exactly one diagonal passes through some vertex Ai. This diagonal
splits the angle at A into two di�erent angles β < γ. Both these angles are adjacent to
the sides of n-gon, therefore in any obtained triangle such angles are adjacent to a side
equal to the side of P . Hence, the sum of all angles of triangles adjacent to the sides of
P is n(β+ γ), which equals to the sum of all angles of P . Therefore, through each vertex
passes exactly one diagonal, and the vertices are paired up, which is absurd again. The
claim is proved.

Finally, assume that P is dissected into k triangles; the sum of all their angles is 180◦ ·kπ.
The angles of P contribute 180◦(n − 2) to this sum, hence the sum of the angles at the
internal points is 180◦(k − n + 2). Each such point contributes 360◦, so the number of
internal points is (k − n + 2)/2. On the other hand, each such point belongs to at least
six triangles, while each vertex of P belongs to at least three of them. Hence the total
number of triangles is at least (3(k − n+ 2) + 3n)/3 = k + 2 > k. A contradiction.
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VIII Geometrical Olympiad in honour of I.F.Sharygin

Final round. Second day. 9th form. Solutions

5. (M.Kungozhin) Let ABC be an isosceles right-angled triangle. Point D is chosen on the
prolongation of the hypothenuse AB beyond point A so that AB = 2AD. Points M and
N on side AC satisfy the relation AM = NC. Point K is chosen on the prolongation of
CB beyond point B so that CN = BK. Determine the angle between lines NK and DM .

Answer. 45◦.

Solution. Let L be the projection ofM onto AB. Notice that
ML

CN
=

AL

BK
=

AD

BC
=

1√
2
;

hence we also have
LD

CK
=

AL+ AD

BK +BC
=

1√
2
. Thus, the right triangles MLD and NCK

are similar, and ∠MDL = ∠NKC (see Fig. 9.5). Therefore the angle between the
lines NK and MD is the same as the angle between KC and LD, which is equal to 45◦.
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Figure 9.5 Figure 9.6

6. (M.Rozhkova) Let ABC be an isosceles triangle with BC = a and AB = AC = b.
Segment AC is the base of an isosceles triangle ADC with AD = DC = a such that
points D and B share the opposite sides of AC. Let CM and CN be the bisectors in
triangles ABC and ADC respectively. Determine the circumradius of triangle CMN .

Answer.
ab

a+ b
.

Solution. Choose a point K on segment AC so that MK ∥ BC. Then ∠MCA =
∠MCB = ∠CMK, so MK = KC. Moreover, by symmetry we get KC = MB. Next,

by the bisector property we have
CK

AK
=

BM

AM
=

a

b
=

DN

AN
. Hence, KN ∥ CD. Now we

may analogously obtain KN = KC. Thus, K is the circumcenter of triangle CMN , so
its circumradius equals KC = MB = ab/(a+ b) (see Fig. 9.6).

7. (A.Belov) A convex pentagon P is divided by all its diagonals into ten triangles and one
smaller pentagon P ′. Let N be the sum of areas of �ve triangles adjacent to the sides of P
decreased by the area of P ′. The same operations are performed with the pentagon P ′;
let N ′ be the similar di�erence calculated for this pentagon. Prove that N > N ′.

Solution. Let A1A2A3A4A5 be the initial pentagon, B1B2B3B4B5 be the pentagon
formed by its diagonals, and C1C2C3C4C5 be the pentagon formed by the diagonals

10



of B1B2B3B4B5 (see Fig. 9.7). We will enumerate all the vertices cyclically, thus, for
instance, Ai+5 = Ai. For convenience, we will denote the area of polygon P by [P ].

Notice that N ′ =
∑

i[BiBi+1Bi+2]− [B1B2B3B4B5], since in the right-hand part the pen-
tagon C1C2C3C4C5 is counted with multiplicity −1, the triangles of the form BiBi+1Ci+3

� with multiplicity 1, and the triangles of the form CiCi+1Bi+3 with zero multiplicity.
Thus the desired inequality is equivalent to∑

i

[AiAi+1Bi+3] >
∑
i

[BiBi+1Bi+2].

We will prove that [AiAi+1Bi+3] > [Bi+2Bi+3Bi+4]; adding up �ve such inequalities we
will get the desired inequality.

Clearly, it is enough to deal with the case i = 1. Let us glue a triangle A1B3B4 to each
of the triangles A1A2B4 and B3B4B5; we get two triangles A1B3A2 and A1B3B5 with a
common base A1B3. Finally, the distance from B5 to the base is smaller than the distance
from A2; hence, [A1B3A2] > [A1B3B5], QED.
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8. (M.Plotnikov) Let AH be an altitude of an acute-angled triangle ABC. Points K and L
are the projections of H onto sides AB and AC. The circumcircle of ABC meets line KL
at points P and Q, and meets line AH at points A and T . Prove that H is the incenter
of triangle PQT .

Solution. Let O be the center of the circumcircle Ω of triangle ABC. From right
triangles ABH and ACH we get AK · AB = AH2 = AL · AC, or AK/AL = AC/AB.
Therefore, triangles ALK and ABC are similar, and ∠AKL = ∠ACB. Now, since
∠OAB = π/2 − ∠ACB, we get OA ⊥ KL, which means that OA is the perpendicular
bisector to the chord PQ, so AP = AQ. This means that TA is the bisector of ∠PTQ
(see Fig. 9.8).

Thus, the incenter I of triangle PQT lies on TA. Moreover, it is well-known that AI =
AP . Thus, to prove that I = H it su�ces to show that AH = AP . Let D be the meeting
point of the lines AO and KL, and let r be the radius of Ω. By the Pythagoras theorem,
we have AQ2 − r2 = AQ2 − OQ2 = (AD2 +DQ2)− (OD2 +DQ2) = AD2 − (AD − r)2,
which implies AQ2 = 2r · AD. On the other hand, notice that AH is a diameter of
the circumcircle of AKL since ∠AKH = ∠ALH = 90◦. Hence the similarity ratio of
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triangles AKL and ABC equals AH/(2r). The segments AD and AH are the respective
altitudes of these triangles, hence AD/AH = AH/(2r), or AH2 = 2r ·AD = AQ2, QED.

Remark. The proof of the relation AQ = AH may be shortened by means of the
inversion with center A and radius AQ. Under this inversion, the line PQ and the circle Ω
interchange, hence the points B and K also interchange, and AQ2 = AB · AK = AH2.
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VIII Geometrical Olympiad in honour of I.F.Sharygin

Final round. First day. 10th form. Solutions

1. (A.Shapovalov) Determine all integer n such that a surface of an n×n×n grid cube can
be pasted in one layer by paper 1 × 2 rectangles so that each rectangle has exactly �ve
neighbors (by a line segment).

Answer. All even n.

Solution. Consider any even n. Divide each face into 2× 2 squares, and paste each such
square with two rectangles in such a way that the long sides of the rectangles in one square
are adjacent to the short ones in a neighboring square. Let us show that such pasting
is possible. It is easy to see that one may cover four side faces of the cube, leaving top
and bottom faces uncovered. Next, one may paste one bordering row on the top face (the
arrangement of the rectangles around the corner looks as on Fig. 10.1, or symmetrically
to it). This row determines the arrangement of rectangles on the top face uniquely, and
it is easy to see that all four bordering rows of squares will satisfy the conditions. The
covering of the bottom face is analogous.

Figure10.1

Now assume that a pasting is possible for some odd n. The total number of rectangles
is 6n2/2 = 3n2; if each of them has �ve neighbors, then the total number of pairs of
neighboring rectangles is 3n2 · 5/2; but this number is not integer, which is absurd.

2. (A.Zaslavsky, B.Frenkin) We say that a point inside a triangle is good if the lengths of
the cevians passing through this point are inversely proportional to the respective side
lengths. Find all the triangles for which the number of good points is maximal.

Answer. All acute-angled triangles.

Solution. Let AA1, BB1, and CC1 be the altitudes of a triangle ABC, and H be its
orthocenter. Consider any good point P ; let AAP , BBP , CCP be the cevians passing
through P . Then we have AAP/AA1 = BBP/BB1 = CCP/CC1; hence the right tri-
angles AA1AP , BB1BP , and CC1CP are similar, so ∠A1AAP = ∠B1BBP = ∠C1CCP .
There are two ways how these angles may be oriented. (Recall that an oriented angle

∠(ℓ,m) is the angle at which one needs to rotate ℓ clockwise to obtain a line parallel
to m.)

Case 1. Suppose that ∠(A1A,AAP ) = ∠(B1B,BBP ) = ∠(C1C,CCP ) (in particular,
the triangle ABC is acute-angled; if, for instance, ∠A ≥ π/2, then the angles ∠B1BBP

and ∠C1CCP are acute, and their orientation s are opposite). The �rst equality yields
that the points P , H. A, B are concyclic; analogously, P lies on the circumcircles of
triangles ACH and BCH. But these three circles have exactly one common point H;
hence P = H.
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Case 2. Now suppose that two of the oriented angles are equal, while the third (say,
∠(C1C,CCP )) is opposite to them. Then, as in Case 1, the point P lies on the cir-
cumcircle ΩC of triangle ABH (recall that ∠(AH,HB) = −∠(AC,CB), so ΩC is sym-
metrical to the circumcircle Ω of ABC with respect to the line AB). Let X be the
second meeting point of ΩC with the line CH (then the points X and C are also sym-
metrical in AB; on Figs. 10.2.1 and 10.2.2 two possible con�gurations are shown). Then
∠(PX,XC) = ∠(PB,BH) = −∠(PC,CX); if these angles are nonzero, then this rela-
tion shows that the triangle PCX is isosceles, PC = PX. But then the point P lies on the
perpendicular bisector AB of segment CX, which is impossible. Thus, ∠(PB,BH) = 0,
and P = H.

Consequently, a point inside the triangle is good only if it is the orthocenter (and, obvi-
ously, the orthocenter of an acute-angled triangle is good). So, in an acute-angled triangle
there exists exactly one good point, and there are no good point i other triangles.

Remark. In Case 2, one may apply a shorter (but less elementary) argument. The
locus of points P satisfying the relation ∠(B1B,BBP ) = −∠(C1C,CCP ) is an equilateral
hyperbola circumscribed about triangle ABC. Two such hyperbolas may have at most
four common points, and these points are A, B, C, and H.

3. (A.Karlyuchenko) Let M and I be the centroid and the incenter of a scalene triangle
ABC, and let r be its inradius. Prove that MI = r/3 if and only if MI is perpendicular
to one of the sides of the triangle.

First solution. Let C1 and C2 be respectively the tangency points of side AB with the
incircle ω and excircle ωC of triangle ABC. Denote by C ′ the midpoint of AB. It is
well known that C1C

′ = C2C
′. Next, consider a homothety with center C mapping ωC

to omega; under this homothety, point C2 maps to a point C3 on ω opposite to C1 (since
the tangents in C1 and C3 to ω are parallel; see Fig. 10.3.1). Then IC ′ is a midline
of triangle C1C2C3, hence C ′I ∥ CC2. Thus, under a homothety with center M and
coe�cient −2, the point I maps to a point N lying on CC2 (analogously, N lies on the
segments connecting other vertices with the corresponding point of tangency of other
excircles; N is called the Nagel point of triangle ABC). Therefore, N is obtained from M ′

by a homothety with center I and coe�cient 3.

Now we turn to the problem. Suppose that MI = r/3. Then point N lies on ω. Without
loss of generality we may assume that the tangent at N to ω intersects sides AC and BC;
then ω and C share di�erent sides of this tangent, and hence N = C3. Since IC3 ⊥ AB,
we obtain MI ⊥ AB (see Fig. 10.3.2).

14



A B

C

I
M

N

C1C2

C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3

C ′ A B

C

I
M

N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3N = C3

C2

Figure 10.3.1 Figure 10.3.2

Conversely, if AB ⊥ IM , then N lies on the line IC2; moreover, it also lies on the
line CC2. Since the triangle ABC is scalene, these lines are distinct, hence N = C2, and
thus r = IN = 3IM .

Second solution. Suppose that AB ⊥ IM . By the Pythagoras theorem, AM2−BM2 =
(AC2

1 + C1M
2)− (BC2

1 + C1M
2) = (p− a)2 − (p− b)2 = c(b− a) (here, again, C1 is the

tangency point of AB with the incircle). Using the standard formula for the median
length, we get AM2 = 1

9
(2b2 +2c2 − a2) and BM2 = 1

9
(2a2 +2c2 − b2), whence c(b− a) =

1
3
(b−a)(a+b), or a+b = 3c, that is, p = 2c. It is easy to show that the converse is also true:

namely, if p = 2c, then AB ⊥ IM . Finally, from c(IM + r)/2 = SABM = SABC/3 = pr/3
we obtain IM + r = 4r/3, or IM = r/3.

Conversely, assume that MI = r/3. Notice that IA2 + IB2 + IC2 = (
−−→
IM +

−−→
MA)2 +

(
−−→
IM+

−−→
MB)2+(

−−→
IM+

−−→
MC)2 = MA2+MB2+MC2+2

−−→
IM ·(

−−→
MA+

−−→
MB+

−−→
MC)+3MI2 =

MA2 +MB2 +MC2 +3MI2. So, if MI = r/3, then IA2 + IB2 + IC2 = MA2 +MB2 +
MC2 + 1

3
r2 = 1

3
(a2 + b2 + c2 + r2). Next, by the Pythagoras theorem IA2 = r2 + (p− a)2.

Finally, using the relation r2 = S2/p2 = (p− a)(p− b)(p− c)/p, we obtain

a2 + b2 + c2 + r2

3
= (p− a)2 + (p− b)2 + (p− c)2 + 3r2,

or

a2 + b2 + c2

3
− (p− a)2 − (p− b)2 − (p− c)2 =

8r2

3
=

8(p− a)(p− b)(p− c)

3p
,

which rewrites as (p − 2a)(p − 2b)(p − 2c) = 0. It was mentioned above that if some
expression in the brackets vanishes then IM is perpendicular to the corresponding side.

4. (B.Frenkin) Consider a square. Find the locus of midpoints of the hypothenuses of right-
angled triangles with the vertices lying on three di�erent sides of the square and not
coinciding with its vertices.

Answer. All the points of a curvilinear octagon bounded by the arcs of eight parabolas
with foci at the vertices of the square and directrices containing a side (non-adjacent to
the focus); the midpoints of the sides of the square should be excluded (see Fig. 10.4.1).
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Solution. Notice �rst that the midpoint of the hypothenuse lies inside a square. If the
endpoints of a hypothenuse lie on opposite sides of the square, then its midpoint lies on
the midline of the square. Now assume that the endpoints X and Y of the hypothenuse
of a triangle XY Z lie on sides AB and AD of a square ABCD respectively, while the
vertex Z lies on the side BC (see Fig. 10.4.2). Denote by O the midpoint of XY . The
points A and Z belong to the circle with diameter XY ; hence OA = OX = OY = OZ,
and the distance from O to A is less that the distances to the other vertices of the square,
but is not less than the distance from O to the line BC.

The locus of points equidistant from A and BC is the parabola with focus A and direc-
trix BC (the vertex of this parabola is the midpoint of AB). So, the point O lies between
this parabola and BC in the quarter of the square closest to A. Point O may lie on the
parabola, but it cannot lie on the midline of the square (otherwise Y = B).

Analogously, one may consider other arrangements of points; taking the union of the
obtained sets, we obtain the curvilinear octagon P bounded by the arcs of eight parabolas.
The vertices of P are the midpoints of the sides of the square (they do not belong to the
locus) and the points of intersection of parabolas with the diagonals of the square. Since
the midlines of the square also lie in P , we obtain that the total locus lies in P . It remains
to show that each point O in P (distinct from the midpoints of the sides) belongs to the
locus.

If O lies on the midline parallel to AB, and it is not farther from AD than from BC,
then one may take its projections onto AB and V D as the midpoints X and Y of a
hypothenuse, and �nd Z as a meeting point of AD with the circle with diameter XY . If
O lies in the quarter closest to A, between the parabola with focus A and directrix BC
and the corresponding midline, then one chooses X and Y as the second intersection
points of sides AB and AD with the circle with center O and radius OA, while Z may be
chosen as any point of intersection of the same circle with side BC (such a point exists
since the distance from O to BC is less than OA, but OB > OA).
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VIII Geometrical Olympiad in honour of I.F.Sharygin

Final round. Second day. 10th form. Solutions

5. (F.Nilov) A quadrilateral ABCD with perpendicular diagonals is inscribed into a circle
ω. Two arcs α and β with diameters AB and CD lie outside ω. Consider two crescents
formed by the circle ω and the arcs α and β (see Figure). Prove that the maximal radii
of the circles inscribed into these crescents are equal.
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K LX Y

Figure 10.5.1 Figure 10.5.2

Solution. Let X and Y be respectively the midpoints of the arc α and the arc AB of
the circle ω. Denote by O the center of ω. Then the crescent with vertices A and B is
situated between the concentric circles centered at O with radii OY and OX (see Fig.
10.5.2). Hence the diameter of any circle inscribed into this crescent is at most XY ; on
the other hand, the circle with diameter XY lies inside the crescent. Thus the maximal
diameter of a circle inside this crescent equals XY .

Since AC ⊥ BD, the sum of arcs AB and CD of the circle ω equals 180◦. Let K
and L be the midpoints of segments AB and CD respectively; then ∠AOK = 90◦ −
∠COL = ∠OCL, hence the right triangles AOK and OCL are equal by hypothenuse
and acute angle. So OX = OK + KX = OK + KA = (AB + CD)/2, and therefore
XY = (AB + CD)/2 − r, where r is the radius of ω. Analogously we obtain that the
maximal radius of a circle inscribed into the second crescent also equals (AB+CD)/2−r.

6. (V.Yassinsky) Consider a tetrahedron ABCD. A point X is chosen outside the tetrahe-
dron so that segment XD intersects face ABC in its interior point. Let A′, B′, and C ′

be the projections of D onto the planes XBC, XCA, and XAB respectively. Prove that
A′B′ +B′C ′ + C ′A′ ≤ DA+DB +DC.
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Figure 10.6 Figure 10.7

Solution. Since DA′ ⊥ (XBC), we get ∠DA′C = 90◦; analogously, ∠DB′C = 90◦ (see
Fig. 10.6). Hence the points A′ and B′ lie on the sphere with diameter DC, and the
distance between them is does not exceed the diameter: A′B′ ≤ DK. Analogously, we
get A′C ′ ≤ DB and B′C ′ ≤ DA. Adding up these inequalities we get the desired one.
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7. (F.Ivlev) Consider a triangle ABC. The tangent line to its circumcircle at point C meets
line AB at point D. The tangent lines to the circumcircle of triangle ACD at points A
and C meet at point K. Prove that line DK bisects segment BC.

Solution. It is well known that in any triangle XY Z, the symmedian XX ′ (that is, the
line symmetrical to the median from the vertex X with respect to the angle bisector of
angle X) passes through the common point of the tangents to the circumcircle of XY Z
at Y and Z. Thus, the lineDK is a symmedian in triangle ACD. Next, the triangles ACD
and CBD are similar. So, denoting by DL and DM respectively their medians from D,
we get ∠CDK = ∠ADL = ∠CDM , which implies that M lies on DK.

8. (D.Shvetsov) A point M lies on the side BC of square ABCD. Let X, Y , and Z be
the incenters of triangles ABM , CMD, and AMD respectively. Let Hx, Hy, and Hz be
the orthocenters of triangles AXB, CY D, and AZD. Prove that Hx, Hy, and Hz are
collinear.
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Figure 10.8

Solution. Clearly, the points X and Y lie on the diagonals BD and AC respectively.
Hence the lines AC and BD contain some altitudes of triangles AXB and CYD respec-
tively. Let us choose points P and Q on the segments AM and DM respectively so that
AP = DQ = AD. Then AX is an angle bisector (and hence an altitude) of an isosceles
triangle ABP . Thus, the orthocenter Hx is the common point of the lines BP and AC.
Analogously, Hy is the common point of the lines CQ and BD. Finally, from similar
arguments we get that AZ ⊥ DP and BZ ⊥ AQ, so Hz is the common point of the
lines AQ and BP (see Fig. 10.8).

Now let us apply the Desargues' theorem to the triangles BPD and CAQ. Since the
lines BC, PA, and DQ which connect the corresponding points of these triangles are
concurrent atM , we get that the common points of the lines containing the corresponding
sides of these triangles are collinear. But these points are exactly Hx, Hy, and Hz.
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