
VIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
THE CORRESPONDENCE ROUND. SOLUTIONS

1. (M.Rozhkova) (8) In triangle ABC point M is the midpoint of side AB, and point D is the
foot of altitude CD. Prove that ∠A = 2∠B if and only if AC = 2MD.

Solution. Let K be the midpoint of AC (fig.1). Since DK is the median of a right-angled
triangle ADC, we obtain that AK = KD and ∠ADK = ∠A. On the other hand, MK is a
medial line of ABC, therefore, ∠DMK = ∠B. Applying the external angle theorem to triangle
DMK we obtain that the equalities KD = DM and ∠KDA = 2∠KMD are equivalent.
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2. B.Frenkin) (8) A cyclic n-gon is divided by non-intersecting (inside the n-gon) diagonals to
n− 2 triangles. Each of these triangles is similar to at least one of the remaining ones.

For what n this is possible?

Answer. For n = 4 and for n > 5.

Solution. It is clear that n > 3. Now if n is even then we can bisect a regular n-gon to two
equal polygons by a diagonal passing through its center and divide these two polygons by the
same way. Also we can construct on three sides of a regular 2k-gon equal triangles with vertices
on the circumcircle. Thus for odd n > 5 such situation is also possible. Prove that it isn’t
possible for n = 5.

If the circumcenter of a pentagon doesn’t lie on dividing diagonals then the triangle containing it
is acute-angled and two remaining triangles are obtuse-angled, i.e. the condition of the problem
can’t be true. If the circumcenter lies on the diagonal then two triangles adjacent with this
diagonal are right-angled and the third triangle is obtuse-angled. Thus the condition also isn’t
true.

3. (D.Shvetsov) (8) A circle with center I touches sides AB,BC,CA of triangle ABC in points
C1, A1, B1. Lines AI, CI, B1I meet A1C1 in points X, Y , Z respectively. Prove that ∠Y B1Z =
∠XB1Z

Solution. Since B1I ⊥ AC, it is sufficient to prove that ∠Y B1A = ∠XB1C. Since CI is
the medial bisector to A1B1, therefore ∠Y B1A1 = ∠C1A1B1, and since ∠A1B1C = ∠B1A1C,
therefore ∠Y B1A = ∠C1A1B (fig.3). Similarly ∠XB1C = ∠A1C1B = ∠C1A1B.
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4. (A.Akopyan) (8) Given triangle ABC. Point M is the midpoint of side BC, and point P is the
projection of B to the perpendicular bisector of segment AC. Line PM meets AB in point Q.
Prove that triangle QPB is isosceles.

Solution. Let D be the reflection of B in the medial bisector to AC, and T be the common
point of AB and CD. Then ACBD is an isosceles trapezoid, thus BDT is an isosceles triangle
(fig.4). The line PM contains the medial line of this triangle, Therefore triangle QPB is also
isosceles.
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5. (D.Shvetsov) (8) On side AC of triangle ABC an arbitrary point is selected D. The tangent
in D to the circumcircle of triangle BDC meets AB in point C1; point A1 is defined similarly.
Prove that A1C1||AC.

Solution. The condition yields that ∠C1DA = ∠DBC and ∠A1DC = ∠DBA (fig.5). Therefore
A1BC1D is a cyclic quadrilateral, i.e. ∠C1A1D = ∠C1BD = ∠CDA1.
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6. (D.Shvetsov) (8–9) Point C1 of hypothenuse AC of a right-angled triangle ABC is such that
BC = CC1. Point C2 on cathetus AB is such that AC2 = AC1; point A2 is defined similarly.
Find angle AMC, where M is the midpoint of A2C2.

Answer. 135◦.

Solution. Let I be the incenter of ABC. Since C1 is the reflection of B in CI, and C2 is the
reflection of C1 in AI, we obtain that BI = IC2 and ∠BIC2 = 90◦. Similarly BI = IA2 and
∠BIA2 = 90◦ (fig.6). Therefore, I is the midpoint of A2C2, and ∠AIC = 135◦.
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7. (B.Frenkin) (8–9) In a non-isosceles triangle ABC the bisectors of angles A and B are inversely
proportional to the respective sidelengths. Find angle C.

Answer. 60◦.

Solution. Let AA1, BB1 be the bisectors of the given triangle, and AA2, BB2 be its altitudes.
The condition yields that AA1/AA2 = BB1/BB2, therefore, ∠A1AA2 = ∠B1BB2. But ∠A1AA2 =
|∠B − ∠C|, ∠B1BB2 = |∠A− ∠C|. Since the triangle isn’t isosceles, an equality ∠A− ∠C =
∠B − ∠C is impossible. Therefore, ∠C = (∠A+ ∠B)/2 = 60◦.

8. (D.Shvecov) (8–9) Let BM be the median of right-angled triangle ABC (∠B = 90◦). The
incircle of triangle ABM touches sides AB, AM in points A1, A2; points C1, C2 are defined
similarly. Prove that lines A1A2 and C1C2 meet on the bisector of angle ABC.

Solution. Since ABM , CBM are isosceles triangles, points A1, C1 are the midpoints of
correspondent cathetus. Also the line A1A2 is perpendicular to the bisector of angle A, therefore
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it is the bisector of angle AA1C1 (fig.8). Similarly C1C2 is the bisector of angle CC1A1. Thus
its common point is the excenter of triangle A1BC1 and lies on the bisector of angle B.
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9. (A.Karluchenko) (8–9) In triangle ABC, given lines lb and lc containing the bisectors of angles
B and C, and the foot L1 of the bisector of angle A. Restore triangle ABC.

Solution. Let I be the common point of lb and lc. Then IL1 is the bisector of angle A. Thus
we know the angles between the bisectors of the triangle and therefore we know the angles of
the triangle. Construct an arbitrary triangle A′B′C ′ with the same angles, find its incenter I ′,
construct on the lines lb, lc the segments IB′′ = I ′B′, IC ′′ = I ′C ′ and pass the line through
L1 parallel to B′′C ′′. This line meets lb, lc at the vertices B, C of the sought triangle. The
construction of the vertex A is now evident.

10. (B.Frenkin, A.Zaslavsky) In a convex quadrilateral all sidelengths and all angles are pairwise
different.

a)(8–9) Can the greatest angle be adjacent to the greatest side and at the same time the
smallest angle be adjacent to the smallest side?

b)(9–11) Can the greatest angle be non-adjacent to the smallest side and at the same time the
smallest angle be non-adjacent to the greatest side?

Answer. a) Yes. b) No.

Solution. a) Consider a triangle ABC with AC > BC > AB. Take on the segment AC a
point P , such that AP = BC, construct the perpendicular from P to AC and take on this
perpendicular a point D, lying outside the triangle and sufficiently near to P . Then AD is the
greatest side of quadrilateral ABCD, CD is its smallest side, D is the greatest angle, and C is
the smallest angle (fig.10).
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b) Suppose, that ABCD is a quadrilateral satisfying to the condition. We can think that B is
the greatest angle, and CD is the smallest side. Then the equality AC2 = AB2 +BC2 − 2AB ·
BC cosB = AD2 +CD2 − 2AD ·CD cosD yields that AD is the greatest side, therefore, C is
the smallest angle. Since ∠C+∠D < π, the rays CB and DA meet at some point P . Since angle
C is acute and ∠C + ∠A < π, we obtain that sinA > sinC. Since PB/ sinA = AB/ sinP >
CD/ sinP = PD/ sinC, this yields that PB > PD. But PB = PC−BC < PC−CD < PD —
contradiction.

11. (Tran Q.H.) Given triangle ABC and point P . Points A′, B′, C ′ are the projections of P to
BC, CA, AB. A line passing through P and parallel to AB meets the circumcircle of triangle
PA′B′ for the second time in point C1. Points A1, B1 are defined similarly. Prove that

a) (8-10) lines AA1, BB1, CC1 concur;

b) (9–11) triangles ABC and A1B1C1 are similar.

Solution. Since PC is the diameter of the circumcircle of PA′B′, therefore the angle PC1C is
right, i.e. C1 lies on the altitude of ABC. Similarly A1, B1 lie on the two remaining altitudes.
Thus the lines AA1, BB1, CC1 meet on the orthocenter H and the assertion a) is proved. Also
A1, B1, C1 lie on the circle with diameter PH, because the angles PA1H, PB1H, PC1H are
right. Therefore, the angle between the lines A1C1 and B1C1 is equal to the angle between the
lines HA1 and HB1, which as the angle between two altitude of the triangle ABC is equal two
the angle between its sidelines AC and BC. Thus the angles of the triangles ABC and A1B1C1

are equal, i.e. these triangles are similar.

12. (M.Zhanbulatuly) (9–10) Let O be the circumcenter of an acute-angled triangle ABC. A line
passing through O and parallel to BC meets AB and AC in points P and Q respectively. The
sum of distances from O to AB and AC is equal to OA. Prove that PB +QC = PQ.

Solution. An equality cosA+cosB+cosC = 1+ r/R yields, that in an acute-angled triangle
the sum of distances from O to the sides is equal to the sum of the circumradius and the inradius.
Thus we obtain that PQ passes through the incenter I. Then ∠PIB = ∠IBA = ∠IBP and
PB = IP . Similarly QC = IQ.

13. (A.Zaslavsky) (9–10) Points A, B are given. Find the locus of points C such that C, the
midpoints of AC, BC and the centroid of triangle ABC are concyclic.
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Answer. A circle having the center at the midpoint of AB and the radius equal to AB
√
3/2

without its common points with line AB.

Solution. Let the medians AA0 and BB0 of the triangle meet at the point M . From the
condition we have that AM · AA0 = AB0 · AC, i.e. AA2

0 = 3
4
AC2. Similarly, BB2

0 = 3
4
BC2.

Since for an arbitrary triangle the ratio of the sums of the squares of its medians and its sides
is equal to 3/4, these equalities yield that the median from C is equal to AB

√
3/2. It is clear

that all points of the circle distinct from its common points with line AB lie on the sought
locus.

14. (M.Volchkevich) (9–10) In a convex quadrilateral ABCD suppose AC ∩BD = O and M is the
midpoint of BC. Let MO ∩ AD = E. Prove that AE

ED
=

S△ABO

S△CDO
.

Solution. Let P be the common point of AB and MO. Applying the Menelaos theorem to
triangles ABC and ABD, we obtain that AP

PB
· BO

OD
· DE

AE
= AP

PB
· BM

MC
· CO

OA
= 1. Therefore,

AE
ED

= OA·OB
OC·OD

=
S△ABO

S△CDO
.

15. (A.Zaslavsky) (9–11) Given triangle ABC. Consider lines l with the next property: the reflections
of l in the sidelines of the triangle concur. Prove that all these lines have a common point.

Solution. Let the reflections of l concur at the point P . Then the reflections of P lie on l,
therefore, the projections of P to the sidelines are collinear. By Simson theorem P lies on the
circumcircle of ABC. Since the Simson’s line of P bisects the segment between P and the
orthocenter H of ABC, we obtain that l passes through H.

16. (F.Ivlev) (9–11) Given right-angled triangle ABC with hypothenuse AB. Let M be the midpoint
of AB and O be the center of circumcircle ω of triangle CMB. Line AC meets ω for the second
time in point K. Segment KO meets the circumcircle of triangle ABC in point L. Prove that
segments AL and KM meet on the circumcircle of triangle ACM .

First solution. Since BMKC is a cyclic quadrilateral, therefore ∠BMK = 90◦ and O lies
on BK. Thus ∠ABL = ∠MBK = ∠MCK = ∠A. Therefore, ∠MAL = ∠B, and the angles
between AL and KM is equal to angle A, i.e. angle ACM (fig.16).
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Second solution. Since KCB is a right angle, therefore O lies on KB. Since AB is a diameter
of the circumcircle of ABC, therefore ALB is also a right angle. The angle KMB is right,
because KCB is a right angle. Thus Kis the orthocenter of the triangle formed by A, B and
the common point of AL and MK. Then two right angles with vertices C and M leans on the
same diameter.
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17. (M.Rozhkova) (9–11) A square ABCD is inscribed into a circle. Point M lies on arc BC, AM
meets BD in point P , DM meets AC in point Q. Prove that the area of quadrilateral APQD
is equal to the half of the area of the square.

Solution. Since ∠AMD = 45◦ = ∠OAD = ∠ODA, therefore ∠AQD = ∠AMD + ∠MAQ =
∠PAD. Similarly, ∠APD = ∠ADQ (fig.17). Thus the triangles APD and QDA are similar,
i.e. AQ · PD = AD2, which yields the assertion of the problem.
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18. (B.Frenkin) (9–11) A triangle and two points inside it are marked. It is known that one of the
triangle’s angles is equal to 58◦, one of two remaining angles is equal to 59◦, one of two given
points is the incenter of the triangle and the second one is its circumcenter. Using only the
ruler without partitions determine where is each of the angles and where is each of the centers.

Solution. Construct the line passing through the marked points. It meets two sides of the
triangle (for example AB and AC) and the prolongation of the third side (for example beyond
the vertex C). Then AB is the greatest side of the triangle, BC is the smallest side and the
marked poind nearest to BC is the incenter.

Prove these assertions. Let I be the incenter of given triangle and O be its circumcenter. Joining
them with the vertices of the triangle and calculating the angles we obtain that O lies inside
the triangle formed by I and the greatest side , and I lies inside the triangle formed by the
smallest side and O. Thus the line OI meets the greatest and the smallest sides, therefore this
line meet the prolongation of the third side. Also we obtain that O lies nearer to the greatest
side, and I lies neare to the smallest side.

Now we have to examine wyich prolongation of side AC does OI meet. For this compare
the lengths of the perpendiculars from O and I to AC. If r is the inradius, and R is the
circumradius, then the distance from I to AC is equal to r, and the distance from O to AC is
equal to R cos 59◦ > R/2 > r, which yields the answer.

19. (A.Zaslavsky) (10–11) Two circles with radii 1 meet in points X, Y , and the distance between
these points also is equal to 1. Point C lies on the first circle, and lines CA, CB are tangents
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to the second one. These tangents meet the first circle for the second time in points B′, A′.
Lines AA′ and BB′ meet in point Z. Find angle XZY .

Answer. 150◦.

Solution. The condition yields that the distance between the centers of the circles is equal to√
3, therefore by Euler formula these circles are the circumcircle and the excircle of the triangle

A′B′C, i.e. A′B′ touches the second circle in a point C ′, lying on the line CZ (fig.19).
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Let O and O′ be the centers of the circles. Then ∠A′O′A = ∠AO′C ′ + 1
2
∠C ′O′B = 2∠ABC ′ +

∠C ′AB = ∠CB′A′+ 1
2
∠CA′B′, ∠O′A′O = ∠O′A′B′+∠B′A′O = π

2
−∠C ′O′A′+ π

2
−∠BCA =

π − ∠BCA − 1
2
∠CA′B′ = ∠CB′A′ + 1

2
∠CA′B′, and, since O′A = OA′, therefore AO′A′O is

an isosceles trapezoid. Thus ∠O′AA′ = ∠A′OO′ and, similarly, ∠O′BB′ = ∠B′OO′. Therefore,
∠A′ZB′ = 2π−∠AO′B−∠A′OB′ = π−∠C, i.e. Z lies on the circumcircle and ∠XZY = 150◦.

Note. We can prove that Z lies on the circumcircle on the other way. The point isogonally
conjugated to Z wrt A′B′C is the homothety center of the circles, which is an infinite point
because the radii are equal.

20. (G.Feldman) (10–11) Point D lies on side AB of triangle ABC. Let ω1 and Ω1, ω2 and Ω2 be
the incirles and the excircles (touching segment AB) of triangles ACD and BCD. Prove that
the common external tangents to ω1 and ω2, Ω1 and Ω2 meet on AB.

First solution. Let I1, J1, I2, J2 be the centers of ω1, Ω1, ω2, Ω2, and K1, K2 be the intersection
points of I1J1, I2J2 with AB (fig.20). Then I1K1/I1C = J1K1/J1C, I2K2/I2C = J2K2/J2C
and, applying the Menelaos theorem to the triangle CK1K2, we obtain that I1I2 and J1J2 meet
AB at the same point. The common external tangents also pass through this point.
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Second solution. Let the common external tangents to ω1 and Ω2 meet at a point P. Then
applying the three caps theorem to ω1, Ω1, Ω2 and to ω1, ω2, Ω2, we obtain, that the intersection
points of the common external tangents to Ω1, Ω2 and to ω1, ω2 coincide with the common
point of the lines PC and AB. Thus these point coincide and lie on AB.

21. (N.Beluhov, E.Colev) (10–11) Two perpendicular lines pass through the orthocenter of an acute-
angled triangle. The sidelines of the triangle cut on each of these lines two segments: one lying
inside the triangle and another one lying outside it. Prove that the product of two internal
segments is equal to the product of two external segments.

Solution. Let one of two lines meets BC, CA, AB at the points Xa, Xb, Xc, and the remaining
line meets them at the points Ya, Yb, Yc (fig.21). Then ∠HYaB = ∠XbHA and ∠HXbA =
∠YaHB, because the sidelines of these angles are perpendicular. Thus the triangles HBYa and
XbAH are similar. The triangles HXaB and YbAH are also similar. Therefore, AXb · BYa =
AH · BH = AYb · BXa. On the other hand applying the Menelaos theorem to the triangles
CXaXb, CYaYb and the line AB, we obtain that CA

AXb
· XbXc

XcXa
· XaB

BC
= CA

AYb
· YbYc

YcYa
· YaB

BC
= 1. These

three equalities yield the assertion of the problem.

9



A

C

B

Xa

Yb

Ya

H

Xb

XcYc

Fig.21

22. (F.Nilov) (10–11) A circle ω with center I is inscribed into a segment of the disk, formed by
an arc and a chord AB. Point M is the midpoint of this arc AB, and point N is the midpoint
of the complementary arc. The tangents from N touch ω in points C and D. The opposite
sidelines AC and BD of quadrilateral ABCD meet in point X, and the diagonals of ABCD
meet in point Y . Prove that points X, Y , I and M are collinear.

Solution. Let K, L — be the touching points of ω with AB and the great circle. Since L is the
homothety center of the circles, and the tangents at the points K and N are parallel, therefore
the points L, K, N are collinear. Also we have ∠KAN = ∠NLA, because the correspondent
arcs are equal. Thus the triangles KAN and ALN are similar and AN2 = NK · NL = NC2,
i.e. quadrilateral ABCD is inscribed into a circle with center N (fig.22). The line XY is the
polar of the common point of AB and CD wrt this circle. And since ∠NAM = ∠NBM =
∠NCI = ∠NDI = 90◦, therefore the points M and I are the poles of AB and CD. Thus they
lie on XY .
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23. (A.Kanel) (10–11) An arbitrary point is selected on each of twelve diagonals of the faces of a
cube. The centroid of these twelve points is determined. Find the locus of all these centroids.

Solution. Firstly note, that the locus of the midpoints of the segments with endpoints lying
on two diagonals of a square is the square with the vertices coinciding with the midpoints of
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the sides of the original square. Thus the locus of the centroids of four points lying on the
diagonals of two opposite faces of a cube is the square with the vertices coinciding with the
centers of four remaining faces. Therefore we have to find the locus of centroids of three points
each of them lies inside one of three such squares. It is clear that all such centroids lie inside
an octahedron formed by the centers of the faces of the cube. Also, if one of three points lies
on the central plane of the octahedron, and the distances from two remaining points to this
plane don’t exceed a half of the edge of the cube, then the distance from the centroid to this
plane isn’t greater than one third of the edge. Therefore all centroids lie inside the polyhedron
obtained by the cutting off the octahedron six pyramids with the edges equal to one third of
the edge of the octahedron. On the other hand all vertices of this polyhedron and therefore all
its points lie on the sought locus.

24. (V.Yassinsky) (10–11) Given are n (n > 2) points on the plane such that no three of them aren’t
collinear. In how many ways this set of points can be divided into two non-empty subsets with
non-intersecting convex envelops?

Answer. n(n− 1)/2.

Solution. Since the convex envelops don’t intersect, the two subsets lit on different sides from
some line. Thus we have to examine in how many ways the given set of the points can be
divided into two subsets by a line. Take a point O of the plane, which don’t lie on any line
joining the given points, and consider the polar correspondence with center O. The given points
correspond to n lines, such that no two of them aren’t parallel and no three don’t concur. It is
easy to prove by induction that these lines divide the plane into n(n+ 1)/2 + 1 parts, and 2n
from these parts aren’t limited.

Lemma. Let the polars a, b of the points A, B divide the plane into 4 angles. Then the poles
of the lines, intersecting the segment AB, lie inside two vertical angles, and the poles of the
lines which don’t intersecting the segment AB lie inside two remaining angles.

In fact let the lines l and AB meet at the point X. Then the polar of X passes through the
common point of a and b. When l rotates around X, its pole moves on this line, i.e. inside some
pair of vertical angles formed by a and b. When X moves on AB its polar rotates around the
common point of a and b, passing from one pair of vertical angles into the other when X passes
through A, B. Lemma is proved.

Return to the problem. The lemma yields that two lines divide the given set of the points by
the same way iff their poles lie inside the same part formed by the polars of the given points, or
these poles lie on the different sides from all n polars. But the second case is possible iff the two
points lie inside the not limited parts. In fact if two points P , Q lie on the different sides from
all lines, then each of these lines intersect the segment PQ. Thus each of two rays prolongating
this segment lies entirely inside one of the parts. Inversely, if the part containing the point P
isn’t limined, then ther exists a ray with endpoint in P , lying entirely inside this part and not
parallel to any of n lines. The opposite ray intersect all lines and therefore contains a points
lying on the different sides than P from these lines.

Thus, 2n not limited parts forms n pairs, each of them correspond to one way of dividing of the
given set of the points. Each of limited parts also correspond to one way of dividing. Therefore
we have n(n− 1)/2 + 1 ways, but for one of them all n points belong to the same subset.
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