МАТЕМАТИЧЕСКИЙ КРУЖОК

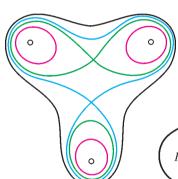
О лемнискате Бернулли

А.АКОПЯН

Что такое лемниската?

Лемнискатой с фокусами F_1, F_2, \dots, F_n называется кривая на плоскости, обладающая тем свойством, что для любой точки на ней произведение расстояний до фокусов постоянно. На рисунке 1 приведено семейство лемнискат с тремя фокусами.

Уравнение лемнискаты с n фокусами имеет степень 2n.



Упражнение 1. Напишите это уравнение.

Лемнискаты с двумя фокусами называются овалами Кассини. Среди них наибольший интерес представляет лемниската Бер-

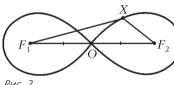


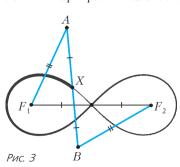
Рис. 1

нулли (рис.2) — такая кривая, что для любой точки на ней произведение расстояний до фокусов равно квадрату половины расстояния между ними: $F_1X\cdot F_2X=\left(\frac{F_1F_2}{2}\right)^2$. Очевидно, что эта лемниската проходит через середину отрезка с концами в своих фокусах. Эта точка называется *узловой*, или *двойной точкой* лемнискаты.

Лемниската Бернулли обладает множеством очень интересных свойств. Например, площадь, ограничиваемая ею, равна $\frac{1}{2}\,F_1F_2^2$. Здесь мы докажем несколько других интересных свойств, при этом постараемся использовать только «геометрические аргументы», т.е. доказывать факты по возможности без вычислений.

Как построить лемнискату Бернулли?

Существует очень простой способ нарисовать лемнискату Бернулли с помощью следующей конструкции из трех скрепленных шарнирами «палочек». Первые две палочки F_1A и

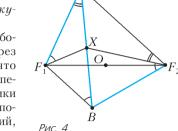


Іервые две палочки F_1A и F_2B , прикрепленные к точкам F_1 и F_2 соответственно, имеют длину $\frac{1}{\sqrt{2}}F_1F_2$, причем точки A и B всегда лежат по разные стороны от прямой F_1F_2 . Третья палочка соединяет точки A и B и имеет длину F_1F_2 (рис.3).

Оказывается, что при

«вращении» этих палочек середина АВ будет двигаться по лемнискате Бернулли с фокусами F_1 и F_2 .

Давайте докажем это. Обозначим середину AB через X (рис. 4). Заметим, что F_1AF_2B — равнобокая трапеция. Кроме того, треугольники AF_1X и ABF_1 подобны, поскольку угол A у них общий,



а $\frac{AF_1}{AX} = \frac{AB}{AF_1} = \sqrt{2}$. По тем же

самым причинам подобны и треугольники BXF_2 и BF_2A , так как у них общий угол B и отношение длин сторон при угле B равно $\sqrt{2}$. Поэтому мы можем выписать следующую цепочку равенств углов:

$$\angle AF_1X = \angle ABF_1 = \angle BAF_2 = \angle XF_2B$$
.

Обратим также внимание на то, что углы при A и F_2 у трапеции F_1AF_2B равны, а поскольку равны и углы AF_1X и XF_2B , получаем, что равны и углы F_1AX и XF_2A . Следовательно, треугольники F_1AX и F_2AX подобны, откуда

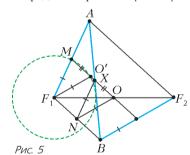
$$\frac{F_1X}{AX} = \frac{AX}{XF_2} \Rightarrow XF_1 \cdot XF_2 = AX^2 = F_1O^2 \; .$$

Итак, произведение расстояний от точки X до F_1 и F_2 равно квадрату половины расстояния между F_1 и F_2 . А значит, точка X движется по лемнискате Бернулли. Можно доказать, что траекторией точки X будет вся лемниската Бернулли. Интуитивно это понятно, поскольку точка X движется непрерывно и «появляется» во всех «крайних» точках лемнискаты.

Упражнение 2. Какова будет траектория точки X, если от конструкции потребовать, чтобы точки A и B всегда лежали по одну сторону от F_1F_2 ?

Пусть O — середина отрезка F_1F_2 — узловая точка лемнискаты. Обозначим через M и N середины отрезков F_1A и F_1B

соответственно (рис.5). Сдвинем точку O на вектор $\overline{NF_1}$, получившуюся точку обозначим через O'. Заметим, что треугольники F_1MO' и NXO равны, кроме того, выполнено равенство



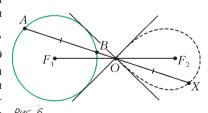
$$F_1 M = F_1 O' = \frac{1}{\sqrt{2}} F_1 O$$
.

Таким образом, точки M и

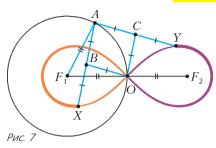
O' лежат на окружности с центром в F_1 и радиусом $\frac{1}{\sqrt{2}}F_1O$. Из этого можно получить еще один элегантный способ построения лемнискаты Бернулли.

А именно, **метод Маклорена**. Давайте построим окруж-

ность с центром в одном из фокусов и радиусом $\frac{1}{\sqrt{2}}F_1O$ (рис.6). Далее, на каждой секущей ABO (где A и B – это точки пересечения секущей и окружности) выберем такие точки X и X', что Рис. 6



37-53.p65 42 1 29.05.09, 14:34



AB = OX = OX'. Множество точек Xи X' в объединении образуют лемнискату Бернулли с фокусами F_1 и F_2 .

Отметим еще один интересный способ построения лемнискаты с помощью «па-

лочек». Данная конструкция изображена на рисунке 7. Длина палочки F_1A равна F_1O . Точка A также является концом палочек \overrightarrow{AX} и \overrightarrow{AY} , длина каждой из которых равна $\sqrt{2}F_1O$. Кроме того, середины этих палочек – точки B и C – соединены с O палочками длины $\frac{AX}{2}$. При вращении точки A по окружности каждая из точек X и Y описывает половину лемнискаты Бернулли с фокусами F_1 и F_2 .

Упражнение 3. Докажите это.

Лемниската и равносторонняя гипербола

Гораздо более известной фигурой является гипербола множество точек X таких, что величина $|F_1X - F_2X|$ постоянна. Точки F_1 и F_2 называются фокусами гиперболы. Среди гипербол следует выделить равностороннюю гиперболу -

множество точек
$$X$$
 таких, что $|F_1X - F_2X| = \frac{F_1F_2}{\sqrt{2}}$

множество точек X таких, что $|F_1X - F_2X| = \frac{F_1F_2}{\sqrt{2}}$. Упражнение 4. Докажите, что уравнение $y = \frac{1}{x}$ задает равностороннюю гиперболу, и найдите ее фокусы.

Оказывается, лемниската Бернулли является инверсным образом равносторонней гиперболы. Напомним, что такое инверсия.

Определение. Инверсией относительно окружности с центром в точке О и радиусом г называется преобразование плоскости, переводящее каждую точку X в точку X^* , лежащую на луче OX и такую, что $OX \cdot OX^* = r^2$.

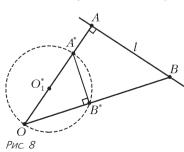
Инверсия обладает одним очень удобным свойством – при инверсии окружности переходят в окружности или прямые. Подробнее про инверсию можно прочесть, например, в книге [1]. Мы же здесь докажем следующую лемму, которая пригодится нам в дальнейшем.

Лемма. Пусть А - проекция точки О на некоторую прямую 1. Тогда при инверсии относительно окружности с центром О прямая 1 перейдет в окружность с диаметром OA^* , $\imath \partial e^-A^*$ – инверсный образ точки A.

Доказательство. Пусть B — произвольная точка на прямой l, а B^* – ее инверсный образ (рис.8). Поскольку

$$OA^* = \frac{r^2}{OA} \quad \text{if } OB^* = \frac{r^2}{OB} ,$$

получаем, что треугольники OAB и OB^*A^* подобны. Следовательно, угол OB^*A^* прямой, и точка B^* лежит на



окружности с диаметром OA^* . Стоит также отметить, что центром этой окружности будет точка O_1^* , инверсная точке О₁, симметричной О относительно прямой 1.

Докажем теперь, что лемниската Бернулли с фокусами F_1 и F_2 и равносторонняя гипербола с фокусами F_1 и F_2 инверсны относительно окружности с центром в O и радиусом OF_1 .

Для этого воспользуемся результатами, полученными при доказательстве корректности построения лемнискаты Бер-

нулли с помощью трех палочек (см. рис.4). Обозначим через P точку пересечения прямых F_1A и F_2B , а через Q – точку, симметричную ей относительно прямой F_1F_2 (рис.9).

Заметим, что

$$F_2Q - F_1Q = F_2P - F_1P =$$

$$= AP - F_1P = F_1A = \frac{F_1F_2}{\sqrt{2}}.$$

Значит, точки P и Q лежат на равносторонней гиперболе с центрами в Рис. 9 F_1 и F_2 . Осталось пока-

зать, что точки X и Q инверсны относительно окружности с центром в O и радиусом OF_1 . Для начала докажем, что треугольники F_1XO и PF_1O подобны.

Во-первых, заметим, что F_1XOB – трапеция, поэтому $\angle OXF_1 + \angle XF_1B = 180^\circ$, кроме того, выполнено равенство $\angle AF_1O + \angle OF_1P = 180^\circ$. А поскольку углы XF_1B и AF_1O равны, получаем, что равны и углы OXF_1 и OF_1P .

Далее, поскольку углы XF_2B и XF_1A равны, то $\angle XF_1P + \angle PF_2X = 180^\circ$, т.е. четырехугольник PF_1XF_2 вписанный. Следовательно,

$$\angle F_2 F_1 X = \angle F_2 P X = \angle F_1 P O$$
.

Последнее равенство верно в силу того, что точки O и Xсимметричны относительно серединного перпендикуляра к

Итак, треугольники F_1XO и PF_1O подобны по двум углам. Из этого следует, что углы F_1OX и F_1OP равны, а значит, точка Q лежит на луче OX. Кроме того, из подобия треугольников F_1XO и QF_1O (который симметричен ΔPF_1O) следует, что

$$\frac{OX}{OF_1} = \frac{OF_1}{OQ} \Rightarrow OX \cdot OQ = OF_1^2$$
.

А это и означает, что точки Q и X инверсны относительно окружности с центром в O и радиусом OF_1 .

Из рисунка 9 можно сделать еще одно наблюдение, а именно, что точки X и O лежат на окружности с центром в точке Р. Оказывается, что эта окружность касается лемнискаты Бернулли (про две кривые говорят, что они касаются в некоторой точке, если касательные к кривым в этой точке совпадают). Давайте докажем это.

Рассмотрим прямую *l* – касательную к гиперболе в точке О (рис. 10). Из леммы следует, что при инверсии относительно окружности с центром O и радиусом F_1O прямая lдолжна перейти в окружность ω_l , проходящую через точку

О, а также касающуюся лемнискаты в точке X, поскольку точка X инверсна О. Из леммы следует также, что центр этой окружности лежит на прямой, проходящей через О и перпендикулярной l. Покажем, что эта прямая ОР симметрична прямой ОО отно-

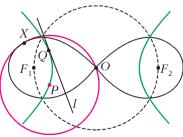
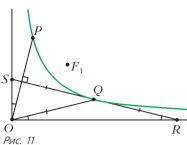


Рис. 10



сительно F_1F_2 . Из этого будет следовать, что точка P является центром окружности ω_l .

Перейдем в систему координат, в которой формула соответствующей гиперболы будет записываться

 $y=rac{1}{x}$. Пусть прямая l пересекает ось абсцисс и ось ординат в точках R и Sсоответственно (рис.11). Как известно, производная функции $\frac{1}{x}$ в точке x_0 равна $\frac{-1}{x_0^2}$. Отсюда легко получить, что точка Q является серединой отрезка RS, а OQ — медианой прямоугольного треугольника ROS. (Подробнее об этом можно прочитать в статье А. Заславского «Аффинная геометрия» в «Кванте» №1.) Следовательно, углы QOR и QRO равны. Но поскольку равны и углы POS и QOR, получаем, что прямая OP перпендикулярна RS. Что и требовалось.

Заметим также, что поскольку окружность ω, касается лемнискаты в точке X, радиус PX этой окружности будет нормалью (перпендикуляром к каса-

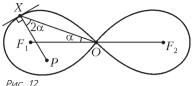


Рис. 12

тельной) к лемнискате в точке X (рис.12). В силу того, что треугольник ХРО равнобедренный, а прямые ХО и РО симметричны относительно F_1O , можно выписать следующую цепочку равенств углов: $\angle PXO = \angle XOP = 2\angle POF_1$. Это дает нам очень простой способ построения нормали к лемнискате Бернулли. А именно, для любой точки X проведем прямую, образующую с прямой OX угол $2\angle XOF_1$.

Эта прямая и будет нормалью к лемнискате.

Список литературы

- 1. А.А. Заславский. Геометрические преобразования. М.: МЦМНО, 2004.
- 2. Маркушевич А.И. Замечательные кривые. М.: Гостехиздат,

омула крюков

А.СПИВАК

Что для нас - головоломка, духом тайны разум будит очевидно, для потомка просто школьным курсом будет.

И.Губерман

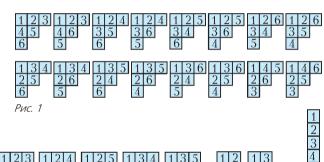
ИАГРАММЫ И ТАБЛИЦЫ АЛЬФРЕДА ЮНГА (1873-1940) изучаются в математике уже более ста лет. Современная комбинаторика немыслима без них.

Появившись сначала в работах по разбиениям чисел на слагаемые, а затем в важной и довольно трудной области алгебры - теории представлений симметрических групп, диаграммы Юнга стали обнаруживаться в самых разных областях математики. В этой статье рассказывается об одной знаменитой формуле для количества таблиц Юнга данной формы - о формуле крюков.

Пользоваться ею в вычислениях сможет и пятиклассник, так что каждый читатель журнала что-то из этой статьи почерпнет. Но лучше, конечно, понять излагаемое здесь ее доказательство, которое замечательно тем, что при решении чисто комбинаторной задачи будут использованы антисимметрические многочлены. Что это такое – тоже рассказано в статье.

Первые примеры

На рисунке 1 показаны все существующие 16 способов так заполнить диаграмму, состоящую из 6 клеток, числами от 1 до 6, что числа возрастают при движении слева направо и сверху вниз. На рисунке 2 - пять заполнений диаграммы из 5 клеток (других способов, как легко убедиться, нет); на рисунке 3 - два заполнения диаграммы из 3 клеток; на рисунке 4 - единственный способ заполнить «столбик» высотой 5 (очевидно, способ единственный и при любой другой высоте столбика).



Определения

Рис. 4

Чтобы понять, что такое диаграмма Юнга, представьте себе лист бумаги (какого угодно размера) в клеточку и отрежьте от него несколько клеток, соблюдая условие: вместе с любой отрезанной клеткой отрезаем и все клетки, расположенные ниже или правее нее.

Другими словами, диаграмма Юнга состоит из своего левого верхнего угла – некоторой клетки А – и обладает следующим свойством: вместе с любой своей клеткой B она содержит и все клетки прямоугольника, левым верхним углом которого является клетка А, а правым нижним клетка B.

Таблица Юнга - это диаграмма из <math>n клеток, заполненная числами от 1 до n так, что числа возрастают при движении слева направо и сверху вниз (далее мы будем рассматривать только такие заполнения).

Числа сочетаний

Рассмотрим диаграмму, состоящую из m + n + 1 клеток, m+1 из которых расположены в верхней строке, а n+1 – в левом столбце. Пример для m = 3 и n = 2 – рисунок 5; число 1 в любом случае расположено в левом верхнем углу; заполнение однозначно определено тем, какие именно три числа стоят в незаполненных клетках верхней строки. Интересующее нас количество заполнений обозначают C_{m+n}^m и называют числом сочетаний из m + n по m. Число сочетаний

– это количество способов выбрать т элементов из множе-

37-53.p65 29.05.09. 14:34

