
The �rst Olympiad, 2005

Final round. Solutions

Grade 9

1. (A.A.Zaslavsky) The quadrilateral ABCD is inscribed in a circle with the center O within
the quadrilateral. Prove that if ∠BAO = ∠DAC, then the diagonals of the quadrilateral are
perpendicular to each other.

Solution. Since ∠ABO = (π−∠AOB)/2 = π/2−∠ADB, we have ∠DAC+∠ADB = π/2,
which is equivalent to the problem statement (see the �gure).
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2. (L.A.Yemelyanov) Find all isosceles triangles that cannot be cut into three isosceles
triangles having equal lateral sides.

Solution. An acute triangle can be cut into three isosceles triangles with equal lateral sides
which are radii of the circumcircle. If the triangle ABC is obtuse (C is the obtuse angle), then
let us choose points A′, B′ on side AB, such that AB′ = B′C = CA′ = A′B and cut the original
triangle into triangles AB′C, A′B′C and A′BC (see the �gure).
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Let us prove that a right triangle ABC (AC = BC) cannot be cut in the required manner.
Clearly there are two distinct methods for cutting one triangle into three. The �rst is to cut

along the lines connecting the vertices with a certain point within a triangle. The second is to
cut it into two triangles along the line passing through a vertex, and then to repeat this with
one of the resulting triangles (see the �gure).

In the �rst case the triangle AXB can be isosceles only if AX = BX, but then another two
triangles will not be isosceles. In the second case at least one of triangles resulting from the
initial cut needs to be isosceles. Therefore, the initial cut line either is a bisector of the right
angle or it links point C and point D on the hypotenuse, such that AD = AC. In neither case
it is possible to draw a second line to make the required cut.

3. (I.F.Sharygin) Given a circle and points A and B on it. Draw the set of midpoints of the
segments one endpoint of which lies on the smaller circle arc AB and the other endpoint lies
on the larger one.

Solution. Let K be an arbitrary point within the given circle. A chord with the midpoint K
is perpendicular to OK. Therefore it intersects the segment AB i� one of angles OKA, OKB
is not acute, while the other one is not obtuse. So, the set of points in question consists of the
points within or on the border of one of the disks with diameters OA, OB, and outside or on
the border of the other one (see the �gure).
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4 (A.G.Myakishev) Let P be the point of intersection for the diagonals of a quadrilateral
ABCD. Let M be the meet point for the lines linking the midpoints of its opposite sides. Let
O be the meet point for the perpendicular bisectors to the diagonals. Let H be the meet point
for the lines linking orthocenters of triangles APD and BCP , APB and CPD. Prove that M
is the midpoint of OH.

Solution. Let O1 be the midpoint of AC, and O2 be the midpoint of BD. It is not hard
to show that point M is the midpoint of segment O1O2 (clearly M is the mass center in the
system 1A, 1B, 1C, 1D; consider the subsystems 1A, 1C and 1B, 1D which are equivalent to
subsystems 2O1, 2O2).

Obviously the quadrilateral formed by the orthocenters is a parallelogram with sides belonging
to perpendiculars dropped from vertices of the quadrilateral to respective diagonals. So H is
the meet point for the diagonals and splits them in halves.

Let us prove that line HO1 is parallel to OO2. Or, to put it di�erently, the former is
perpendicular to diagonal BD. Consider the line perpendicular to this diagonal and passing
through H. Let us demonstrate that it also passes through the point O1. Let our line intersect
the segment AH4 at the point K. Then it is a medial line in the triangle AH3H4 and therefore
K is the midpoint of AH4. It follows that our line will also be a central line in the triangle
AH4C and as such will pass through O1.

Following the same line of argument we ascertain that the line HO2 is parallel to OO1,
i.e. HO1OO2 is a parallelogram where the point M is the intersection of its diagonals (see the
�gure).
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It follows from the above that points O, M , H are collinear and OM =MH.
5. (B.R.Frenkin) Given a triangle with the following property: for any of its sides it is

impossible to construct a triangle from the altitude, the bisector and the median drawn to this
side. Prove that one of the angles of the given triangle is greater than 135◦.

Solution. It follows from the problem condition that each median is greater or equal to the
sum of the bisector and the altitude from the same vertex. If the angle between some median
and the respective altitude does not exceed 60◦, then the median is not greater than the doubled
altitude, while the sum of the bisector and the altitude is not less than the doubled altitude,
and these equalities are not attained simultaneously. Therefore it follows from the problem
condition that the angle between each median and the respective altitude is greater than 60◦.
Since the lesser of the angles in the triangle does not exceed 60◦, some altitude is outside of the
triangle, which is therefore obtuse.

Let A be the vertex of the obtuse angle, B and C the other two vertices, AM the median,
AH the altitude, and the pointM belongs to the segment BH. As proved above, ∠AMH < 30◦.
It is equal to the sum of angles ABM and BAM . The median from the vertex of the obtuse
angle is less than a half of the opposite side. Therefore ∠ABM < 15◦.

The altitude from vertex B forms an angle greater than 60◦ with the respective median, so
with the side BC too. Hence ∠ACB < 30◦. Thus ∠BAC > 180◦ − 15◦ − 30◦ = 135◦.

Grade 10

1. (L.A.Yemelyanov) Given a convex quadrilateral without any parallel sides. For every triple
of its vertices, the point is constructed which complements this trio to a parallelogram (one
diagonal of which coincides with a diagonal of quadrilateral). Prove that out of four constructed
points, exactly one lies within the initial quadrilateral.

Solution one. Let the vertex D′ of the parallelogram ABCD′ lie within the quadrilateral
ABCD. Then ∠BCA < ∠CAD and ∠BAC < ∠ACD. Therefore the points of intersection of
opposite sides in ABCD lie on the extensions of segments AB and BC beyond the point B. It
is obvious that there can be only one vertex with such property in the quadrilateral (see the
�gure).
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Solution two. Let ABCD be the initial quadrilateral, ABCD′ be the parallelogram lying
within it. Let the rays CD′ and AD′ intersect at C1 and A1. Then SABC = SABD′ = SABC1 <
SABD, similarly SABC < SACD. Then SABC < SABD + SACD − SABC = SBCD, i. e. ABC is the
triangle of minimal area formed by three vertices of the quadrilateral. Conversely, if this is the
case, then there will be points A1 and C1 on the sides, such that SABC = SABC1 = SA1BC , and
the point of intersection between AA1 and CC1 will be the one in question (see the �gure).
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2. (A.V.Shapovalov) A triangle can be cut into three similar triangles. Prove that it can be
cut into any number of triangles similar to each other.

Solution. Let the triangle ABC (with angle C being the largest) be cut into three similar
triangles by segments AX, BX, CX. Since ∠AXB > ∠ACB, the angle AXB can only be
equal in the other triangles to angles AXC and BXC. It means that ∠AXB = ∠AXC =
∠BXC = 120◦. But then AX = BX = CX and the triangle ABC is regular.

Suppose now that we cut the triangle into two ones along a line passing through the vertex,
and one of the resulting triangles is also cut into two. Since the two �nal triangles are similar,
they are right-angled. In other words, a right-angled triangle was cut from the initial triangle
at the �rst cut, and then the remaining triangle was split into two by an altitude. Listing all
possible options, it is easy to assure that the initial triangle is either isosceles or right-angled.
In both cases it can be cut into any number of similar triangles.

3. (A.A.Zaslavsky) Two parallel chords AB and CD are drawn in a circle with center O. The
circles with diameters AB and CD intersect at point P . Prove that the midpoint of segment
OP is equidistant from the lines AB and CD.

Solution. Let X, Y be the midpoints of AB and CD, Q be the midpoint of OP . Then
XQ2 = (2OX2+2XP 2−OP 2)/4 = (2OX2+2XA2−OP 2)/4 = (2R2−OP 2)/4 = Y Q2. Thus,
Q is equidistant from point X and Y , and therefore from the lines AB and CD (see the �gure).
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4. (Wim Pijls, the Netherlands) Two segments A1B1 and A2B2 on the plane are given such
that A2B2

A1B1
= k < 1. The point A3 is chosen on the segment A1A2 and the point A4 is chosen

on the extension of segment A1A2 beyond A2 so that A3A2

A3A1
= A4A2

A4A1
= k. Similarly the point B3

is chosen on the segment B1B2 and the point B4 is chosen on the extension of segment B1B2

beyond B2 so that B3B2

B3B1
= B4B2

B4B1
= k. Find the angle between the lines A3B3 and A4B4.

Solution one. Let O be the center of similarity that does not preserve orientation and
that maps A1 to A2 and B1 to B2. As the triangles OA1B1 and OA2B2 are similar, so
∠A1OB1 = ∠B2OA2 and the bisectors of angles A1OA2 and B1OB2 coincide. Since OA2/OA1 =
OB2/OB1 = k, this common bisector crosses the segments A1A2 and B1B2 at points A3 and
B3. The perpendicular to that bisector crosses extensions of the above segments at points A4

and B4 (see the �gure). Therefore, the angle in question is right.
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In order to �nd the point O, let us draw circles with diameters A3A4 and B3B4 and �nd
their points of intersection. Since the circle with diameter A3A4 is the locus of points, for which
the ratio of their distances to A2 and A1 equals k, the points of intersection will be the centers
of two similarities, mapping A1 into A2 and B1 into B2. One of these similarities preserves
orientation, the other changes it.

Solution two. Let ~A1B1 = ~u, ~A2B2 = ~v, by condition ~v2 = k2~u2. Then

~A3B3 = ~A3A1 + ~A1B1 + ~B1B3 =
1

1 + k
~A2A1 + ~u+

1

1 + k
~B1B2; (∗)

on the other side,

~A3B3 = ~A3A2 + ~A2B2 + ~B2B3 =
k

1 + k
~A1A2 + ~v +

k

1 + k
~B2B1. (∗∗)
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Multiplying (∗) by k
1+k

, and (∗∗) by 1
1+k

and summing up the resulting equations, we get
~A3B3 =

k
1+k

~u+ 1
1+k

~v. By analogy we have A4B4 =
1

1−k~v −
k

1−k~u. Then(
~A3B3, ~A4B4

)
=
k~u+ ~v,~v − k~u)
(1 + k)(1− k)

=
k2~u2 − ~v2

1− k2
= 0,

i.e. the vectors are orthogonal.
Solution three (S.Sa�n). Construct parallelogram A1A2B2X and draw the bisector A1Y

in triangle A1XB1. Since
B1Y
XY

= A1B1

A1X
= k, we have B3Y ‖ B2X and B3Y = kB2X = A1A3.

Therefore, A1A3B3Y is a parallelogram, i.e. A3B3 ‖ A1Y (see the �gure).
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Similarly A4B4 is parallel to the external bisector of the angle XA1B1, which means that
the lines A3B3 and A4B4 are perpendicular.

5. (A.A.Zaslavsky) Two circles of unit radius intersect at the points X and Y . The distance
between these points also equals one. From point C on one circle, tangents CA and CB are
drawn to the other circle. The line CB has a second intersection with circle one at the point
A′. Find the distance AA′.

Solution. Let O be the center of the circle to which point C belongs. Let O′ be the center
of the other circle. Since OO′ =

√
3, the line A′B′ is tangent to the second circle at point

C ′. Therefore, ∠A′O′A = ∠AO′C ′ + 1
2
∠C ′O′B = 2∠ABC ′ + ∠C ′AB = ∠CB′A′ + 1

2
∠CA′B′,

∠O′A′O = ∠O′A′B′ + ∠B′A′O = π
2
− ∠C ′O′A′ + π

2
− ∠BCA = π − ∠BCA − 1

2
∠CA′B′ =

∠CB′A′+ 1
2
∠CA′B′. Since O′A = OA′, AO′A′O is an isosceles trapezium, and AA′ = OO′ =

√
3

(see the �gure).
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6. (A.A.Zaslavsky) Let H be the orthocenter in the triangle ABC and X be an arbitrary
point. The circle with diameter XH has second intersections with lines AH, BH, CH at points
A1, B1, C1, while with lines AX, BX, CX at points A2, B2, C2. Prove that the lines A1A2,
B1B2, C1C2 concur.

Solution. For de�niteness, let us consider the case when the points are located on the
circle in the following order: A1B2C1A2B1C2. Let XH = d. Then A1B2 = d sin∠A1HB2 =
d sin∠XBC, because HA1 is perpendicular to BC, whereas HB2 is perpendicular to BX.
Therefore, A1B2·C1A2·B1C2

A2B1·C2A1·B2C1
= sin∠XBC sin∠XCA sin∠XAB

sin∠XAC sin∠XCB sin∠XBA = 1, which is equivalent to the problem
statement (see the �gure).
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Remark. Apparently triangle A1B1C1 is similar to the triangle ABC, while the common
point of the lines corresponds to the point isogonally conjugated with X.

Grade 11

1. (A.A.Zaslavsky) Let A1, B1, C1 be the midpoints of sides in the regular triangle ABC.
Three parallel lines passing through A1, B1, C1, intersect the lines B1C1, C1A1, A1B1 at points
A2, B2, C2 respectively. Prove that the lines AA2, BB2, CC2 concur in the point that belongs
to the circumcircle of the triangle ABC.

Solution. Let Z be the common point of AA2 and BB2. Since the points B and B1 are
symmetrical about the line A1C1, we have ∠ABZ = ∠C1BB2 = ∠B2B1C1. Similarly ∠BAZ =
∠A2A1C1. Since the lines AA2 and BB2 are parallel, we have ∠A2A1C2 = ∠B1B2C, therefore,
∠AZB = ∠ACB and the points A, B, C, Z are concyclic. This implies the problem statement
(see the �gure).
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2 (A.G.Myakishev) A convex quadrilateral ABCD is given. The lines BC and AD intersect
at point O so that the point B belongs to the segment OC, while the point A belongs to the
segment OD. Let I be the incenter of the triangle OAB, J be the center of an excircle of
the triangle OCD (tangent to side CD and the extensions of two other sides). Perpendiculars
dropped from the midpoint of segment IJ to the lines BC and AD, intersect with respective
sides of the quadrilateral (not their extensions) at points X and Y . Prove that the segment XY
divides the perimeter of the quadrilateral ABCD in half. In particular, out of all the segments
with this property and with the endpoints at BC and AD, the segment XY has the minimal
length.

Solution. Since tangential segments drawn from the same point are equal, it is not hard to
show that the segment X ′Y ′ with its endpoints on the sides AD and BC divides the perimeter
in half i� OX ′+OY ′ = l, where l is a constant value equal to the doubled length of the segment
of the respective tangent plus half-perimeter of the quadrilateral.

Let M be the midpoint of IJ . It is easy to show that OX + OY = l. Then the triangles
MXX ′ and MY Y ′ are equal, hence the triangles MXY and MX ′Y ′ are similar by two angles.
Therefore, X ′Y ′ is minimal when MX ′ is minimal, i.e. when X ′ coincides with X (see the
�gure).
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3. (A.A.Zaslavsky) Within the inscribed quadrilateral ABCD there is a point K such that
the distances from it to the sides of ABCD are proportional to these sides. Prove that K is
the point of intersection of diagonals in ABCD.

Solution one. Let U be the intersection of tangent lines to the circle ABCD at points A and
C, while X, Y be projections of U to AB and BC. Then UX/UY = sin∠UAX/ sin∠UCY =
sin∠BCA/ sin∠BAC = AB/BC, i.e. K belongs to the line UB. Similarly K belongs to the
line UD, and if these lines do not coincide then K = U . In the same manner it is proved that if
the lines AV and CV do not coincide where V is the meet point of the lines tangent at points
B and D, then K = V , which is impossible. Let us assume that points B, D, U belong to the
same line. Then AB/AD = AU/UD = CU/UD = BC/CD and the points A, C, V also belong
to the same line. Therefore, K is the point of intersection between AC and BD.

Solution two. The set of points with distances to the lines AB and CD proportional to
respective sides, is the line passing through the point of intersection of AB and CD. Since
ABCD is inscribed, the triangles LAB and LCD (where L is the meet point of the diagonals)
are similar, i.e. L belongs to the indicated line. By analogy, L lies on the second such line and
therefore coincides with K.

4. (I.F.Sharygin) In triangle ABC, ∠A = α, BC = a. The incircle is tangent with lines AB
and AC at points M and P . Find the length of the chord dissected from the line MP by the
circle with diameter BC.

Solution one. The distance from the circle center to the chord is equal to the half-sum
of distances from points B and C to the line MP , i.e. 1

2
(BM sin∠AMP + CP sin∠APM) =

1
2
(BM + CP ) cos α

2
= a

2
cos α

2
(see the �gure).
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Therefore, the length of the chord is equal to a sin α
2
.

Solution two. Let I be the incenter of the triangle, X and Y be the points of intersection
of lines BI, CI with line MP . Then ∠MXB = ∠AMP − ∠MBX = ∠B

2
. It follows that the

triangles BXM and BCI are similar, i.e.

BX

BC
=
BM

BI
= cos

∠A
2
.

Hence the angle BXC is right (see the �gure).
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Similarly the angle BY C is right. Therefore the chord in question equals

XY = BC sin∠XCY = a sin
α

2
.

5. (V.Yu.Protasov) The angle on the plane and point K within it are given. Prove that there
exists a point M with the following property: if an arbitrary line passing through K intersects
the sides of the angle at points A and B, then MK is the bisector of angle AMB.

Solution one. On an arbitrary line passing through K and intersecting the angle sides
at points A and B, choose point K ′ such that AK ′/BK ′ = AK/BK. Since all points K ′

belong to the line l passing through the vertex of the angle, all circles with diameter KK ′ pass
through the projection M of K to l. At the same time, the following equation always holds:
AM/BM = AK/BK, i.e. M is the point in question (see the �gure).
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Solution two (R.Devyatov). Let O be the vertex of the angle. Construct a parallelogram
KXOY with two sides on angle sides. Let M be the point symmetrical to K about XY . Let
us prove that M is the point in question.

Let the line passing through K intersect lines OX and OY at points A and B. Observe that
MX = KX, MY = KY , 4MXY = 4KXY = 4OYX, so MOYX is an isosceles trapezium
and ∠MXO = ∠MYO. It means that ∠MXA = 180◦−∠MXO = 180◦−∠MYO = ∠BYM .
Now the triangles AXK and KY B are similar, as their sides are respectively parallel, therefore
KX/XA = BY/Y K. From this we get

MX

XA
=
KX

XA
=
BY

Y K
=
BY

YM
.

14



From the above and the equality of angles MXA and BYM we get that the triangles MXA
and BYM are similar (see the �gure).
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Now, from two proven similarities we get

MA

BM
=
MX

BY
=
KX

BY
=
AK

KB
,

which means that MK is a bisector of triangle AMB.
6. (I.I.Bogdanov) The sphere inscribed in tetrahedron ABCD is tangent to its faces at

points A′, B′, C ′, D′. The segments AA′ and BB′ do intersect, and their meeting point lies
on the inscribed sphere. Prove that the segments CC ′ and DD′ also intersect on the inscribed
sphere.

Solution. Since the segments AA′ and BB′ intersect, the lines AB and A′B′ either also
intersect or are parallel. Let us denote their intersection point (possibly an in�nite one) as P .
Since P lies outside the dihedral angle at the edge CD, the plane CDP does not intersect
the insphere. Thus there exists a projective transformation that �xes the sphere and maps
this plane into the in�nite one. Under this transformation, the segment A′B′ will become the
diameter of the sphere, whereas AB will be parallel to it. As the common point of AA′ and
BB′ lies on the sphere, the distance from its center to AB equals its doubled radius. (In the
�gure, the projection to the plane ABA′B′ is shown).
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Thus the angle between the planes ABC and ABD is equal to 60◦, the large circle arc
linking C ′ and D′ is equal to 120◦, and the lines passing through C ′, D′ and parallel to ABC,
ABD, intersect on the sphere (at the �gure, the projection to the plane perpendicular to AB
is shown).
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