
Second olympiad, year 2006

Correspondence round. Solutions

1. (V.Smirnov) Two lines in the plane, intersecting at an angle of 46◦, serve as symmetry
axes for a geometric figure F . What is the minimal number of symmetry axes of this
figure?

Solution. Answer: 90.

Let l1, l2 be the axes of symmetry for F . By applying consecutively the symmetry
about l1, then the symmetry about l2 and then again the symmetry about l1, we
obtain the symmetry with respect to the line symmetrical to l2 about the line l1
. Therefore, the axes of symmetry for F will be all the lines which form angles of
46◦, 2 · 46◦, . . . , n · 46◦, . . . with l1. Since 46n is not divisible by 180 when n < 90,
these lines will be distinct for n = 1, . . . , 90. I.e. the figure F has at least 90 axes of
symmetry. On the other hand, a regular 90-gon satisfies the problem condition and
has precisely 90 symmetry axes.
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Fig. 1

2. (A.Akopyan) Points A and B move at equal speeds along equal circles. Prove that
the perpendicular bisectors to AB concur at a fixed point.

Solution. (Found by Nikita Bakanchev, 9-grader of Gymnasium 1543 in Moscow).
Let l be the line of symmetry that maps the circles in question into each other. Let
A′ be the point symmetrical to A with respect to l. Then the points B and A′ move
along the same circle with opposite speeds, hence the perpendicular bisector to the
segment A′B does not change. The point of its intersection with l will be the center
of the circumcircle of the triangle AA′B, therefore the perpendicular bisector to AB
always passes through this point.
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3. (Folklore) There is a map with segments of straight linear roads linking three villages.
The villages themselves are beyond the boundaries of the map. Furthermore the fire
station equidistant from the three villages is located inside the boundaries of the
map but not indicated on the map. Can its location be determined using compass
and ruler if the constructions are to be made within the map only?

Solution. Choose an arbitrary point P on the map. A homothety centered in P
with sufficiently small factor k maps the meet points of the roads into certain points
A, B, C within the map. Therefore the circumcenter O of the triangle ABC can be
found. Homothety with center P and factor 1/k maps the point O into the point in
question.

4. (A.Gorskaya, I.Bogdanov) a) Two squares ABCD and DEFG are given, point E
belongs to segment CD, while points F , G lie outside the square ABCD. Find the
angle between the lines AE and BF .

b) Two regular pentagons OKLMN and OPRST are given, where the point P
belongs to segment ON , while the points R, S, T lie outside the pentagon OKLMN .
Find the angle between the lines KP and MS.

Solution. a) Let H be the second point of intersection between circumcircles of the
squares (Fig. 4.1). Since 6 AHD = 45◦, 6 DHF = 90◦, 6 EHF = 135◦, the points A,
E, H are collinear. Similarly the points B, H, F are also collinear. Therefore, the
angle in question equals 6 BHA = 45◦. ==
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Fig. 4.1

b) Answer: 72◦. Solution is analogous to part a).
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5. (A.Tarasov) a) Fold a square 10× 10 from a rectangular stripe 1× 118.

b) Fold a square 10× 10 from a rectangular stripe 1× (100 + 9
√

3) (approximately
1x115.58).

In each case the stripe can be folded but cannot be ripped into parts.

Solution. a) Let points A, B lie on the opposite sides of a stripe at the distance
of 10 from the edge, while points C, D lie at the distance of 12. Folding the stripe
along the bending lines as shown on Fig. 5.1, place its part lying to the right of CD
next to its part lying to the left of AB. Repeating this folding procedure 9 times
and then folding the resulting right triangles we will get the square in question.
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Fig. 5.1
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b) Let points A, B lie on the opposite sides of the stripe at the distance of 10 from
the edge, and let points C, D lie at the distance of 10 +

√
3. By folding the stripe

along the bending lines as shown on Fig. 5.2, place its part lying to the right of CD
next to its part lying to the left of AB. By repeating this folding procedure 9 times
and then folding the resulting right triangles we will get the square in question.
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Fig. 5.2

6. (A.Afanasyev) a) (8-9) Given a segment AB with point C inside it. The segment is
a chord of the circle with radius R. Inscribe a circle into the formed circle segment
such that this circle contains point C and is tangent to the initial circle.

b) (9-10) Given a segment AB with point C inside it, which is the tangency point of
this segment with the circle of radius r. Draw a circle through points A and B such
that it is tangent to the initial circle.

Solution. Firstly let us prove the following fact.

Lemma. Let the circle inscribed in the segment limited by the circle arc and chord
AB, be tangent to the arc at point C and tangent to the chord at point D. Then
CD is the bisector of angle ACB.

Proof. Let O be the center of the major circle, whereas O′ be the center of the
minor one. Let L be the midpoint of the circle arc AB, to which the point C does
not belong (Fig. 6). Since O′ belongs to segment OC, while O′D ‖ OL, the isosceles
triangles O′DC and OLC are similar. Therefore D belongs to the segment CL while
the line CD bisects the angle ACB.

4



2


&

/

' %$

2

Fig. 6

We now turn to the solution of the problem.

a) Let the circle in question be tangent to the given circle at point X. The lemma
implies AX/XB = AC/CB. The set of the points satisfying this condition, is a circle
with the center on the line AB (it is known as Apollonius circle for the points A and
B). Let us take any of the intersection points of the given circle with Apollonius
circle and link it with the center of the given circle. Then find the intersection point
of this line with the perpendicular dropped from C to AB. We obtain the center of
the circle in question. The problem has two solutions as the circle can be inscribed
to either of the two segments in which chord AB splits the given disk.

b) Similarly to section a), let us draw the Apollonius circle and find its meet point
with the given circle other than point C. The circle in question passes through this
point as well as through points A, B. The problem has a single solution.

7. (D.Kalinin) Given are a point E inside the square ABCD and a point F outside it,
so that triangles ABE and BCF are equal. Find the angles of the triangle ABE if
it is known that the segment EF is equal to the side of the square, while the angle
BFD is right.

Solution. Since the angle BFD is right, the point F lies on the circumcircle of
the square, i.e. 6 BFC = 135◦ = 6 AEB (because two other angles in the triangle
AEB are evidently acute). As 6 ABE = 6 CBF 1, 6 EBF = 90◦ and BE/EF =
1√
2

= BE/AB. Applying theorem of sines to the triangle ABE we get sin 6 EAB =

BE sin 6 AEB/AB = 1/2. Therefore 6 EAB = 30◦, 6 EBA = 15◦ (Fig. 7).

1it is not hard to ensure that the case 6 ABE = 6 BCF is impossible.
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8. (A.Blinkov) The segment AB splits the square into two equal parts. A circle can be
inscribed into each of them. The radii of the circles equal r1 and r2 where r1 > r2.
Find the length of AB.

Solution. If the segment AB is a diagonal of the square then it splits the square
into two equal triangles, and r1 = r2, which contradicts the problem condition. If, on
the other hand, one of the parts is a quadrilateral, then the sum of its side AB with
the opposite side is greater than the sum of two other sides (Fig. 8.1), and therefore
a circle cannot be inscribed into it. Hence AB splits the square into a triangle and
a pentagon (Fig. 8.2).
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Fig. 8.1

The circles with radii r1, r2 are the excircle and the incircle of the right triangle
ABC. So, r1 = (AB +BC + CA)/2, r2 = (BC + CA− AB)/2, and AB = r1 − r2.
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Fig. 8.2

9. (A.Kanel) Let the line L(α) link the points of the unit circle, corresponding to the
angles α and π − 2α. Prove that if α + β + γ = 2π, then the lines L(α), L(β) and
L(γ) are concurrent.

Solution. Let A, B, C be the concyclical points corresponding to angles α, β, γ.
The perpendicular from the circle center to the line AB crosses the circle at the
point corresponding to angle (α+ β)/2 = π− γ/2, whereas the perpendicular to the
line L(γ) crosses the circle at the point corresponding to the angle (γ + π− 2γ)/2 =
π/2− γ/2. Therefore L(γ) is an altitude of the triangle ABC. Similarly L(α), L(β)
are altitudes of ABC, and therefore all the three lines intersect at its orthocenter.

10. (B.Frenkin) For what n a regular n-gon can be split by non-intersecting diagonals
into isosceles (and, possibly, equilateral) triangles?

Solution. Answer: n has to be the sum of two powers of two, possibly equal (in
which case n itself is a power of two).

Let us consider the triangle ABC from the decomposition, containing the center
(Fig. 10.1). If the side AB is not a side of the initial polygon, then it splits a
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polygon, where it is the greatest distance between its vertices. Therefore AB has to
be the base of a decomposition triangle whereas the number of sides that it separates
must be even. For the lateral sides of the above triangle similar reasoning can be
provided, therefore the number of sides being cut off by AB is a power of two. (If
AB is a side of the initial polygon, then it cuts off 20 sides.) This is valid for sides
BC and AC too. Since at least two sides in the triangle ABC are equal, we have
n = 2k + 2k + 2l = 2k+1 + 2l.

Fig. 10.1

Conversely, suppose n = 2k + 2l, where k > 0. Suppose A is one of the vertices of a
regular n-gon, while vertices B and C lie in 2k−1 sides from it in two directions. Then
AB = AC and there exists a decomposition of the desired type containing 4ABC
(see Fig. 10.2).
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Fig. 10.2

11. (A.Zaslavsky) Let point O be the center for the circumcircle of the triangle ABC;
let A′, B′, C ′ be the points symmetrical to A, B, C about respective opposite sides;
let A1, B1, C1 be the points of intersection between the lines OA′ and BC, OB′ and
AC, OC ′ and AB. Prove that the lines AA1, BB1, CC1 intersect at the same point.

Solution. Let Oa, Ob, Oc be the points symmetrical to O about BC, CA and AB
respectively. Evidently, the lines COc, OC

′ and AB intersect at the same point, so
in order to solve the problem it suffices to prove that the lines AOa, BOb and COc

intersect at the same point.

Since the triangle OaObOc is homothetic to median triangle ABC with the center
in O and the factor 2, it is centrally symmetrical to the triangle ABC. So the lines
linking the respective vertices of these triangles contain the symmetry center. It is
also easy to ensure that this point serves as the center of 9 points circle for each of
the triangles.

12. (B.Frenkin) In the triangle ABC the bisector of the angle A equals the half-sum of
its median and altitude dropped from the vertex A. Prove that if 6 A is obtuse then
AB = AC.

Solution. Let us assume that the problem statement is wrong. Let H, L, M be the
bases of the altitude, the bisector and the median, while P be the midpoint of the
arc BC (not containing point A) of the circumcircle of the triangle (Fig. 12).
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If the angle A is obtuse, then PM > AH. As L belongs to the segment AP , it
follows that HL < LM and therefore the segment AL is less than the median of the
triangle AHM , which is in turn less than the half-sum of the sides AH and AM . A
contradiction.

13. (A.Akopyan) Consider two lines a and b, as well as two points A and B. The point
X slides along a, whereas the point Y slides along b, so that AX ‖ BY . Find the
locus of intersections between AY and XB.

Solution. Let us draw a line through A parallel to b and crossing a at the point U .
Similarly let us draw a line through B parallel to a and crossing b at the point V . For
any points X, Y satisfying the condition, the respective sides of the triangles AUX
and Y UB are parallel. So these triangles are homothetic, i.e., the lines AY , BX and
UV intersect at the homothety center. Evidently, one could obtain any point of the
line UV in such a way.

14. (A.Zaslavsky) Consider a circle and a fixed point P not belonging to it. Find the
locus for orthocenters of triangles ABP , where AB is the circle diameter.

Solution. Let C be the orthocenter; let A′, B′, C ′ be the bases of altitudes in ABP
dropped from A, B, P ; let P ′ be the projection of C to the line OP (Fig. 14).
Since 6 CC ′O = 6 CP ′O = 90◦, the points O, C, C ′, P ′ belong to the circle and
CP · PC ′ = OP · PP ′. Similarly CP · PC ′ = BP · PA′. However, A′ lies on the
initial circle, therefore BP ·A′P = |R2−OP 2|. Thereby, the product OP ·PP ′ And
hence the point P ′ do not depend on the choice of diameter AB, i.e. the locus in
question is the line perpendicular to OP and passing through the point P ′.
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15. (V.Protasov) For a triangle ABC, consider the circumcircle and the incircle, the
latter of which touches its sides BC, CA, AB at points A1, B1, C1 respectively. The
line B1C1 crosses the line BC at the point P , whereas the point M is the midpoint
of the segment PA1. Prove that the segments of the tangents from the point M to
the incircle and to the circumcircle are equal.

Solution. Assume AB < AC. As soon as the lines AA1, BB1 and CC1 concur, by
Ceva and Menelaus theorems we obtain that PB/PC = A1B/AC. Moreover, MB =
(PB − A1B)/2, MC = (PC + A1C)/2, MA1 = (PB + A1B)/2 = (PC − A1C)/2.
So, MB/MA1 = MA1/MC = A1B/A1C, which is equivalent to the problem’s state-
ment.

16. (P.Pushkar’) Sides of the triangle ABC are bases for regular triangles drawn outside
it. Their outlying vertices form a regular triangle. Is that true that the initial triangle
is regular?

Solution. Answer: yes, it is true. Let us assume the contrary. Then one of the
angles in ABC, for instance the angle A, exceeds 60◦. Then the ray B′C ′ lies outside
of the angle AB′C, and since 6 A′B′C ′ = 6 AB′C = 60◦, the ray B′A′ lies within this
angle. Therefore the ray A′B′ lies within the angle B′AC ′ (Fig. 16). Similarly the ray
A′C ′ lies within this angle, which contradicts the equation 6 B′A′C ′ = 6 BA′C = 60◦.
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17. (A.Zaslavsky) In two circles intersecting at points A and B, two parallel chords A1B1

and A2B2 are drawn. The lines AA1 and BB2 meet at the point X, while the lines
AA2 and BB1 meet at the point Y . Prove that XY ‖ A1B1.

Solution. The problem statement is equivalent to the fact that the points A, B, X,
Y belong to the same circle, i.e., 6 XAY = 6 XBY . However 6 XAY = 6 BAA2 −
6 BAX = 6 BAA2 − 6 BB1A1, 6 XBY = 6 B2BA − 6 AA1B1. At the same time, the
fact that A1B1 and A2B2 are parallel implies 6 ABB1+ 6 A1B1B = 6 BAA2+ 6 B2A2A,
and this evidently implies the required statement.

18. (A.Akopyan) Two perpendicular lines are drawn through the orthocenter H of the
triangle ABC. One of them intersects BC at point X, another one intersects AC
in point Y . The lines AZ, BZ are parallel to the lines HX and HY respectively.
Prove that the points X, Y , Z are collinear.

Solution. For definiteness, consider the case shown on Fig. 18. Let U be the point
of intersection between HX and BZ, and V be the point of intersection between
HY and AZ. Then the problem statement is equivalent to HU/UX = Y V/HV or
HU/Y V = HV/XU . In the right triangles AY V and BUH the angles AY V and
BUH are equal because their sides are perpendicular. Therefore the triangles are
similar and HU/Y V = BU/AV . Similarly HV/XU = BU/AV . The other cases are
considered in the same way.
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19. (L.Yemelyanov) Through the midpoints of the sides of triangle T , the lines per-
pendicular to the bisectors of the opposite angles are drawn. These lines form the
triangle T1. Prove that its circumcenter is the midpoint of the segment linking the
incenter and the orthocenter of T .

Solution. The sides of the triangle T1 are external bisectors of angles in the triangle
T0 formed by the midlines of T . Hence they cross at its excenters. Furthermore the
bisectors of internal angles of T0 serve as altitudes in T1, i.e. its incenter I0 coincides
with the orthocenter of T1, whereas the circumcenter O0 is the center of the circle
passing through the midpoints of sides in T1, and therefore it is the midpoint of
segment I0O1, where O1 is the circumcenter of T1. Moreover, O0 is the midpoint of
the segment OH, where O, H are the circumcenter and the orthocenter of T , while
the center of mass M of T splits the segment HO in the ratio of 2 : 1 ( Fig. 19).
The homothety with the center I0 and the factor 1

3
maps the incenter I of T into

M , while the homothety with center O0 and ratio of −3 maps M to H. Since the
composition of these homotheties is the central symmetry with center O1, point O1

is the midpoint of IH.
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20. (A.Zaslavsky) In the plane, consider four points A, B, C, D. The points A1, B1,
C1, D1 are the orthocenters of triangles BCD, CDA, DAB, ABC respectively. The
points A2, B2, C2, D2 are the orthocenters of triangles B1C1D1, C1D1A1, D1A1B1,
A1B1C1, and so on. Prove that all the circles containing the midpoints of sides of
these triangles, intersect in the same point.

Solution. First, let us prove that the circles containing the midpoints of the sides
of triangles ABC, BCD, CDA and DAB intersect at the same point. Let X be the
point of intersection for the nine point circles of triangles ACD and BCD, that is
different from the midpoint of AB. Let Y , Z, U be the midpoints of AC, BC, CD.
Then 6 Y XZ = 6 Y XU + 6 XUZ = 6 DCA+ 6 BDC = 6 BCD, i.e. X belongs to the
nine point circle of the triangle ABC. Similarly X also belongs to the nine point
circle of the triangle ABD. Now, as the nine point circles of the triangles CDA and
ACB1 coincide, the point X also belongs to the nine point circles of the triangles
ABB1 and CBB1. Similarly it belongs to the nine point circles of the triangles ABA1

and BCC1. Hence it also belongs to the nine point circles of the triangles A1B1B,
BB1C1 and A1B1C1. This implies the problem statement.

A shorter solution is based on the following fact.

Let the points U , V , W belong to an equilateral hyperbola. Then the orthocenter
of the triangle UVW also belongs to this hyperbola, and its nine point circle passes
through the center of the hyperbola.

In fact, drawing an equilateral hyperbola through the points A, B, C, D we obtain
that all the circles pass through its center.

21. (A.Zaslavsky) Consider points C ′, A′, B′ on the sides AB, BC, CA of the triangle
ABC. Prove that the following inequality holds for areas of respective triangles:

SABCS
2
A′B′C′ ≥ 4SAB′C′SBC′A′SCA′B′ ;

moreover, the equality holds only if the lines AA′, BB′, CC ′ concur.

Solution. Denote P1 = AB′ ·BC ′ ·CA′, P2 = BA′ ·AC ′ ·CB′. It is easily seen that
SA′B′C′ = (P1 + P2)/4R, where R is the circumradius of ABC, and therefore

SAB′C′SBC′A′SCA′B′

SABCS2
A′B′C′

=
P1P2

(P1 + P2)2
≤ 1

4
.
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Moreover, the equality holds only if P1 = P2, which is equivalent to the fact that the
lines AA′, BB′ and CC ′ are concurrent.

22. (A.Zaslavsky) Consider a circle and points A and B on it, as well as a point P in the
plane. Let X be an arbitrary point of the circle, Y be the commom point of lines
AX and BP . Find the locus of circumcenters of the triangles PXY .

Solution. Let Q be the point of intersection of the circles ABX and PXY distinct
from X. Then 6 ABQ = 6 AXQ = 6 Y XQ = 6 Y PQ = 6 BPQ. So 6 BQP =
π − ( 6 BPQ + 6 QBP ) = π − 6 ABP does not depend on the choice of the point
X. Therefore, all the circles PXY pass through Q and their centers belong to the
perpendicular bisector of PQ.

23. (A.Myakishev) Consider a convex quadrilateral ABCD, and let G be its center of
mass as of a uniform plate (i.e., the point of intersection of two lines each of which
links centroids of triangles sharing the same diagonal).

a) (9-10) Suppose a circle can be circumscribed about ABCD, a point O being its
center. Let us define point H similarly to point G by taking orthocenters instead of
centroids. Prove that the points H, G, O are collinear, and HG : GO = 2 : 1.

b) (10-11) Suppose a circle with center at point I is inscribed to ABCD. Let Nagel
point N of a circumscribed quadrilateral denote the intersection of two lines, each
of which links the points on the opposite sides of the quadrilateral, symmetrical to
the tangent points of the incircle about midpoints of the sides. (These lines split
perimeter of the quadrilateral in two equal parts). Prove that N , G, I are collinear,
whereby NG : GI = 2 : 1.

Solution. a) Let Ma and Ha be the centroid and the orthocenter of triangle BCD
respectively. Similarly denote the centroids and orthocenters of the remaining three
triangles. All of the triangles have a common circumcircle with center at O. Consid-
eration of Euler’s lines of these triangles whows that the quadrilateral MaMbMcMd

maps into quadrilateral HaHbHcHd under the homothety with center O and factor
3. Therefore, the points of diagonals’ intersection of these quadrilaterals map into
each other.

b) Let us denote by M1 the center of mass of the contour of the quadrilateral. The
point G belongs to the segment IM1 and splits it in ratio of 2 : 1. In fact, M1 is
the center of mass of four points, placed at the midpoints of quadrilateral sides with
masses proportional to their lengths, while G is the center of mass of four points,
placed at the centers of mass of the triangles IAB, IBC,ICD, IDA with masses
proportional to areas of these triangles. Obviously, these two systems of points are
homothetic with center I and factor 2

3
.

Let a, b, c, d be the lengths of tangent segments to the incircle from the vertices A,
B, C, D. It is evident that if the masses a, b, c, d are placed to A, B, C, D, then
the mass center of the resulting system is at the point N . If alternatively we place
masses 2a + b + d, 2b + a + c, 2c + b + d, 2d + c + a to the vertices then the mass
center is the point M1. It remains to show that I is the mass center for masses b+d,
a+ c, b+ d, a+ c.

The point I satisfies the equation SIAB−SIBC+SICD−SIDA = 0. The same equation
holds for the midpoints U and V of diagonals of the quadrilateral. Therefore, these
three points are collinear (these statement is known as Monge theorem). Now let
X, Y be the tangency points of the incircle and the sides BC and AD. Then the
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line XY forms equal angles with these sides and by Brianchon theorem it passes
through the intersection point L of diagonals. By applying sine theorem to triangles
LXB and LY D we obtain that BL/DL = b/d. Similarly, AL/CL = a/c. Together
with the equations SUBC/SUAD = BL/DL, SV BC/SV AD = CL/AL, SIBC/SIAD =
(b+c)/(a+d) this implies that I divides the segment AC in the ratio of (a+c)/(b+d),
as has been required.

24. (Folklore) a) Consider the point P fixed within the circle and two perpendicular rays
passing through it and crossing the circle at points A and B. Find the locus of
projections of P on the lines AB.

b) Consider the point P fixed within the sphere and three pairwise-perpendicular
rays passing through it and crossing the sphere at points A, B, C. Find the locus of
projections of P on the plane ABC.

Solution. a) Let P1 be the point symmetrical to P about the line AB, and P2 be
the point symmetrical to P about the midpoint of segment AB. Then the triangles
ABP1 and ABP2 are symmetrical about the perpendicular bisector to AB, therefore
OP1 = OP2. Since APBP2 is a rectangle, OA2+OB2 = OP 2+OP 2

2 , i.e. the distance
OP2 does not depend on choice of rays PA, PB. Therefore points P1 and P2 belong
to the circle with center O, whereas the projection of P to AB lies on the circle with
the radius twice less and with the center in the midpoint of OP .

b) Let us complete the pyramid PABC to a rectangular parallelepiped PAC ′BCB′P ′A′.
Similarly to part a) we obtain that OP ′2 = 3R2 − 2OP 2, i.e. the point P ′ lies on
the sphere with center O. Since the mass center M of the triangle ABC lies on the
segment PP ′ and splits it in ratio of 1 : 2, M belongs to the sphere with the center
at the point of segment OP dividing it in ratio of 2 : 1. Furthermore, the projection
of O into the plane ABC is the center O′ of the circumcircle of the triangle ABC,
whereas the projection of P is its orthocenter H. Since M belongs to the segment
O′H and MH = 2MO′, we have MK = KH, i.e. the locus in question is the sphere
with center K and radius of

√
3R2 − 2OP 2/3.

25. (A.Zaslavsky) In tetrahedron ABCD the dihedral angles at edges BC, CD and DA
are equal to α, whereas the dihedral angles at the remaining edges are equal to β.
Find the ratio of AB/CD.

Solution. It follows from the problem statement that the trilateral angles at the
vertices A and B as well as at C and D are respectively equal. So, 6 CBD =
6 CBA = 6 DAC = 6 DAB, 6 ADB = 6 CDB = 6 DCA = 6 BCA, and all the faces

of the tetrahedron are similar. Furthermore AB
BC

= BC
BD

= BD
CD

= sin 6 BAC
sin 6 BAD = sinα

sinβ
. So,

AB
CD

=
(
sinα
sinβ

)3
.

26. (D.Tereshin) Four cones with a common vertex and equal length of the generatrix
are given. Radii of their bases are possibly not equal. Each of the cones is tangent
with two others. Prove that the four tangent points of the circle bases of the cones
are concyclic.

Solution. The circle bases of the cones lie on the sphere with center in the vertex of
the cones and the radius equal to their generatrix. Inversion with the center at any
point of this sphere maps it to a plane, whereas the circles are mapped to the circles
on this plane, each of which is tangent to two others. Now the theorem about the
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angle between a tangent and a chord directly implies that the four tangent points
belong to the same circle, which is the image of a circle on the sphere.
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