
Fourth Olympiad (year 2008)
Correspondence round. Solutions

1. (B.Frenkin, 8) Does a regular polygon exist such that just half of its
diagonals are parallel to its sides?

Answer. No, it doesn't.

Solution. If the number of sides in the polygon is odd, then every its
diagonal is parallel to certain its side. In turn, if the number of sides
in the polygon equals 2k, then there are 2k − 3 diagonals from every
vertex, and k− 2 of them are parallel to some sides. Therefore less than
a half of diagonals are parallel to any sides.

2. (V.Protasov, 8) For a given pair of circles, construct two concentric
circles such that both are tangent to the given two. What is the number
of solutions, depending on location of the circles?

Solution. Let the radii of the two circles with center at O be equal
R and r (where R > r). Then there are two sets of circles tangent
to them: with radii equal to R+r

2 and centers distant from O at R−r
2 ,

as well as with radii equal to R−r
2 and centers distant from O at R+r

2 .
Furthermore any pair of circles from the same set will be symmetrical
with respect to a certain line passing through O, while any pair of circles
from di�erent sets will either intersect each other or be tangent. This
implies the following construction.

If the radii of the circles are equal, then the center of the required
concentrical circles belongs to the line about which these circles are
symmetrical. Any point O of this line can serve as such center, except
the points where the given circles intersect. In fact, draw a line through
O and the center of one of the given circles, and determine the points
A, B of its intersection with this circle (see the �gure). The circles with
radii OA, OB do �t.
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Fig. 2a

If the radii of the given circles are not equal, then the center of the
required circles is at the distance from the center of each of the given
circles, equal to the radius of another one. There are two such points if
the given circles intersect, and there is only one such point if the circles
are tangent. The required circles are constructed in the same way as in
the previous case (see the �gure).
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Fig. 2b

So, the problem has in�nitely many solutions if the given circles are
equal, two solutions if the radii are di�erent and the circles intersect,
only a single solution if the radii are di�erent and the circles are tangent
and, �nally, none for the case of uneqal non-intersecting circles.

3. (À.Zaslavskiy, 8) A triangle can be dissected into three equal triangles.
Prove that some its angle is equal to 60◦.

Solution. A triangle can be split into three triangles by either splitting
along the lines linking some internal point with the vertices or by �rstly
splitting along the line passing through a certain vertex and secondly
splitting in the same manner one of the resulting triangles. Let us
consider both cases.

1) Let the triangle ABC be split into three smaller ones by segments
from the pointM . Since the angleAMB is greater than any of the angles
MAC, MBC, MCA, MCB, congruence of triangles is possible only if
∠AMB = ∠BMC = ∠MCA = 120◦. But then MA = MB = MC
and the initial triangle must be regular.

2) Only an isosceles triangle can be cut into two equal triangles. Therefore
one of the triangles obtained in the �rst split must be isosceles, while the
other must be right and equal to �half� of the �rst one. A right triangle
can be cut from the initial one only in one of the following three ways:
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- by dropping an altitude in the initial triangle. But then the second
triangle also is right and the �rst one cannot be equal to its half;

- by drawing a line CD perpendicular to BC through the vertex C of
the obtuse triangle ABC. Then, since the area of triangle BCD equals
half the area of triangle ACD, equations AD = CD = 2BD must hold.
That is impossible since BD is the hypotenuse of the triangle BCD;

- by constructing the line BD in a triangle with right angle C. Then,
similarly to the previous case, we obtain that AD = BD = 2CD and,
therefore, ∠B = 60◦ (see the �gure).
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4. (D.Schnoll, 8�9) The bisectors of two angles in an inscribed quadrangle
are parallel. Prove that the sum of squares of some two sides in the
quadrangle equals the sum of squares of two remaining sides.

Solution. Firstly observe that the bisectors of adjacent angles cannot
be parallel as the sum of these angles is less than 360◦. If, in turn, the
bisectors of angles A and C in the quadrilateral ABCD are parallel,
then ∠A

2 + ∠B + ∠C
2 = 180◦ and ∠B = ∠D. Since the quadrilateral is

inscribed, these angles are right and AB2 +BC2 = CD2 +DA2.

5. (From Kiev Olympiads, 8�9) Reconstruct the square ABCD, given its
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vertex A and the distances of vertices B and D from a �xed point O in
the plane.

Solution. Let O′ be the point such that AO = AO′ and ∠OAO′ = 90◦.
Then ∠O′AB = ∠OAD and, since AB = AD, the triangles OAD and
O′AB are equal. Therefore O′B = OD and knowing the lengths of
segments OB, O′B, we can construct the point B, and then the whole
square (see the �gure). The problem has two solutions symmetrical
about the line OA.
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Fig. 5

6. (À. Myakishev, 8�9) In the plane, given two concentric circles with the
center A. Let B be an arbitrary point on some of these circles, and
C on the other one. For every triangle ABC, consider two equal circles
mutually tangent at the pointK, such that one of these circles is tangent
to the line AB at point B and the other one is tangent to the line AC
at point C. Determine the locus of points K.

Solution. Let M , N be the centers of tangent circles. Then K is the
midpoint of the segment MN , ∠ABM = ∠ACN = 90◦ and BM =
MK = KN = NC (see the �gure). Since AK is the median of the
triangle AMN , AK2 = 2AM2+2AN2−MN2

4 = AB2+AC2

2 does not depend
on the choice of points B, C. Therefore, K belongs to a �xed circle with
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center A. By rotating the triangle ABC around A one can obtain any
other point of this circle.
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7. (À.Zaslavskiy, 8�9) Given a circle and a point O on it. Another circle
with center O meets the �rst one at points P and Q. The point C lies
on the �rst circle, and the lines CP , CQ meet the second circle for the
second time at points A and B. Prove that AB = PQ.

Solution. If C coincides with O, then the problem statement is obvious.
If the point C is diametrically opposite to O, then ∠CPO = ∠CQO =
90◦, i.e. the lines CP , CQ are tangent to the second circle, and the points
A, B coincide with P , Q. In the remaining cases, since OP = OQ, CO
is the bisector of the angle ACB. Under the symmetry about CO the
lines CP and CQ map into each other, while the second circle maps into
itself, hence the point P maps into either Q or B. But CP 6= CQ, so
the �rst case is impossible. Therefore CP = CB. Similarly CQ = CA.
This implies congruence of triangles CAB and CQP and, therefore, the
problem statement itself (see the �gure).
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8. (Ò.Golenishcheva-Kutuzova, B.Frenkin, 8�11) à) Prove that for n > 4,
any convex n-gon can be dissected into n obtuse triangles.

b) Prove that for any n, there exists a convex n-gon which cannot be
dissected into less than n obtuse triangles.

c) In a dissection of a rectangle into obtuse triangles, what is the least
possible number of triangles?

Solution. à) If n > 4 then a convex n-gon must have an obtuse angle. A
diagonal linking two vertices adjacent to the vertex of the obtuse angle
splits the n-gon into an obtuse triangle and an (n− 1)-gon. Therefore,
if one proves the problem statement for n = 5, then for the rest of n it
follows by induction.

Observe that any triangle can be cut into three obtuse triangles. Indeed,
link the vertices of the triangle with the center I of its incircle. Each of
the resulting triangles will have an obtuse angle at the vertex I. This
implies that a quadrilateral di�erent from a rectangle can be split into
four obtuse triangles.

Now consider a pentagon ABCDE. Let its angle A be obtuse. If BCDE
is not a rectangle, then by constructing the diagonal BE and dissecting
BCDE in four obtuse triangles we obtain the cutting required. Otherwise,
if BCDE is a rectangle, then the angles B and E of the pentagon are
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obtuse, i.e. ACDE cannot be a rectangle. Therefore, by constructing
the diagonal AC and dissecting ACDE into four triangles we will again
obtain the required cutting pattern.

b) Let a convex n-gon be cut into (n − 1) obtuse triangles. The sum
of their angles equals (n − 1)π, while the sum of angles in the n-gon
equals (n− 2)π. Therefore, the sum of angles for the triangles that are
non-adjacent to the vertices of the n-gon is equal to π. It means that
there is no more than one obtuse triangle among them. Therefore, the
vertices of the n-gon have at least (n− 2) adjacent obtuse angles of the
triangles. Obviously, every single vertex of the convex n-gon cannot be
adjacent to more than one obtuse angle. Therefore, the n-gon has no less
than (n− 2) obtuse angles. This is true, however, not for every convex
n-gon for any n ≥ 3.

c) It is evident that by constructing a diagonal and dissecting the
resulting triangles into three obtuse-angled ones we will obtain a cutting
of a rectangle into six obtuse triangles.

Let is prove that it is impossible to cut a rectangle into fewer number
of obtuse triangles. If a rectangle could be cut into less than 5 obtuse
triangles then it could be cut into 5 as well: this follows from the fact
that any obtuse triangle can be dissected into two obtuse triangles.

Assume that the rectangle is cut into �ve obtuse triangles. Then, following
the argument presented in section b) above, we will obtain that the sum
of angles in these triangles, that are not adjacent to the vertices of the
rectangle equals 3π. If all of these angles are in the points belonging to
the sides of the rectangle, then there are three such points and there is
no more than one vertex of an obtuse angle at each one. Since there are
no obtuse angles at the vertices of the rectangle, we have a contradiction.
If certain vertices of triangles lie within the rectangle then we have one
internal point adjacent to no more than three obtuse angles, and one
point adjacent to at most one obtuse angle. I.e. the total number of
obtuse angles does not exceed four, and we again get a contradiction.

9. (À.Zaslavskiy, 9-10) The lines symmetrical to diagonalBD of a rectangle
ABCD relative to bisectors of anglesB andD pass through the midpoint
of diagonalAC. Prove that the lines symmetrical to diagonalAC relative
to bisectors of angles A and C pass through the midpoint of diagonal
BD.
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Solution. Let P be the midpoint ofAC, and L be the point of intersection
of the diagonals. Applying the sine theorem to triangles ABP , ABL,
CBP , CBL we obtain AL/CL = (AB/CB)2. Similarly AL/CL =
(AD/CD)2, i.e. BC/CD = AB/AD = sin∠BDA

sin∠DBA = sin∠CDP
sin∠CBP . Therefore,

the lines BP and DP are symmetrical about AC. Let X be the second
point of intersection of the line BP with the circumcircle of the triangle
ABC. The point, symmetrical to X about the perpendicular bisector to
AC, belongs both to PD and to BD and, therefore, coincides with D.
Hence the quadrilateral ABCD is inscribed and AB ·CD = AD ·BC =
(AC ·BD)/2. Let the line symmetrical to AC about the bisector of the
angle A, intersect BD at the point Q. Then the triangles ABQ and
ACD are similar, hence AB/AC = BQ/BD and BQ = BD/2 (see the
�gure).
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10. (À.Zaslavskiy, 9�10) QuadrangleABCD is circumscribed around a circle
with center I. Prove that the projections of points B and D to the lines
IA and IC are concyclic.
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Solution. It is obvious that the midpoint of BD is equidistant from
projections of points B and D to any line. Let us prove that it is also
equidistant from the projections X, Y of the point B to IA and IC.

Since ∠BXI = ∠BY I = 90◦, the points X, Y belong to the circle
with diameter BI, i.e. the perpendicular bisector to the segment XY
passes through the midpoint of BI. Therefore it is su�cient to prove
that XY ⊥ ID. Clearly, in this case the perpendicular bisector to XY
will coincide with the midline of the triangle BDI and will therefore
pass through the midpoint of BD.

As the points B, I, X, Y belong to the same circle, the angle between
XY andXA is equal to the angle between BY and BI, i.e. ∠BIC−90◦.
It follows that the angle between XY and ID is equal to ∠AID +
∠BIC − 90◦ = 90◦ (see the �gure).
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11. (À.Zaslavskiy, 9�10) Given four points A, B, C, D. Any two circles such
that one of them contains A and B, and the other one contains C and
D, meet. Prove that common chords of all these pairs of circles pass
through a common point.

Solution. Firstly let us consider the case when the points are not
collinear. If, for example, C and D lie at the same side from the line
AB then there is a circle ω passing through C and D and tangent to
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AB. Then one can construct a circle with radius large enough, passing
through A and B and not intersecting ω. Therefore, the segments AB
and CD must intersect. LetO be the point of intersection of the perpendicular
bisectors to these segments. Two circles with the center O and radii OA
and OC either do not intersect at all or coincide. Therefore, the points
A, B, C, D are concyclic. By the theorem about radical axes of three
circles, the common chord of any two circles, passing through A, B and
C, D respectively, passes through the meet point of AB and CD.

If all the points given are collinear, then it is obvious that the lines
AB and CD intersect, while the common chord of the circles intersects
with the line containing these points, at some point P that belongs to
both segments and satis�es the equation PA · PB = PC · PD. These
conditions de�ne the point P unambiguously.

12. (À.Myakishev, 9�10) Given a triangle ABC. Point A1 is chosen on the
ray BA so that segments BA1 and BC are equal. Point A2 is chosen
on the ray CA so that segments CA2 and BC are equal. Points B1, B2

and C1, C2 are chosen similarly. Prove that lines A1A2, B1B2, C1C2 are
parallel.

Solution. Let O, I be the circumcenter and the incenter of the triangle.
As BI is the bisector of the angle B in an isosceles triangle A1BC, we
have A1I = IC. Similarly A2I = IB. It follows that

A1I
2 − A2I

2 = IC2 − IB2 = (p− c)2 − (p− b)2 = a(b− c).

On the other hand, if B0, C0 are the midpoints of AC and AB, then

OA2
1 −OA2

2 = OC2
0 −OB2

0 + A1C
2
0 − A2B

2
0 =

=

(
b

2

)2

−
(c
2

)2
+
(
a− c

2

)2
−
(
a− b

2

)2

= a(b− c).

Therefore, the lines A1A2 and OI are perpendicular (see the �gure).
Similarly we obtain that OI is perpendicular to the two other lines.
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13. (À.Myakishev, 9�10) Given triangle ABC. One of its excircles is tangent
to the side BC at point A1 and to the extensions of two other sides.
Another excircle is tangent to side AC at point B1. Segments AA1

and BB1 meet at point N . Point P is chosen on the ray AA1 so that
AP = NA1. Prove that P lies on the incircle.

Solution. The points of tangency of the triangle's sides with the excircles
are symmetrical to its points of tangency with the incircle, relative to
midpoints of sides. So CA1 = p− b, CB1 = p− a, AB1 = BA1 = p− c.
Applying Menelaus theorem to the triangle ACA1 and the line BB1 we
obtain that A1N/AA1 = (p− a)/p. The homothety with this ratio and
the center at A maps the point A1 into the point P . But the ratio
of radii of the incircle and the excircle of the triangle is also equal
to (p − a)/p, which means that the image of the point A1 under this
homothety belongs to the incircle (see the �gure).
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14. (V.Protasov, 9�10) The line connecting the circumcenter and the orthocenter
of a non-isosceles triangle is parallel to the bisector of one of its angles.
Determine this angle.

Answer. 120◦.

Solution. Let O be the circumcenter of the triangle ABC, let H be
its orthocenter, let the line OH be parallel to the bisector of the angle
C. As this bisector intersects the circumcircle at midpoint C ′ of the
circle arc AB, we have OC ′ ⊥ AB, i.e. the quadrilateral OC ′CH is
a parallelogram and CH = OC ′ = R. On the other hand CH =
2R| cosC|, so the angle C equals either 60◦ or 120◦. But in the �rst
case the rays CO and CH are symmetrical about the bisector of the
angle C, so the line OH cannot be parallel to this bisector. Therefore,
C = 120◦ (see the �gure).
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15. (Ì.Volchkevich, 9�11) Given two circles and a point P not lying on
them. Draw a line through P which cuts chords of equal length from
these circles.

Solution. Let A, B be the points of intersection of the required line
with the �rst circle, and the points C,D be the midpoints of intersection
of the required line with the second circle. Let M be the midpoint of
segments AD and BC. Then the powers of point M with respect to
the circles are equal, i.e. M belongs to their radical axis. Let L be the
midpoint of the segment between the centers of the circles. Since the
projections of these centers on the required lines are the midpoints of
segments AB and CD, the point M is the projection of the point L on
this line. Therefore, ∠LMP = 90◦ and M belongs to the circle with
diameter LP . So, in order to construct the line in question, one should
�nd intersection points between this circle and the radical axis. The
problem can have two, one or no solutions.
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16. (À.Zaslavskiy, 9�11) Given two circles. Their common external tangent
line touches them at points A and B. PointsX, Y on the circles are such
that some circle is tangent to the given two circles at these points, and in
similar way (external or internal). Determine the locus of intersections
of lines AX and BY .

Solution. The points X, Y are the centers for homotheties of the given
circles with the tangent circle. Therefore, the line XY contains the
center of homothety between these circles, i.e. the point of intersection
between AB and the line of the centers. Let Y ′ be the point other
than Y where this line intersects the second circle. Then BY ′ ‖ AX è
∠XY B = ∠Y ′BA = π − ∠BAX. Therefore the quadrilateral AXY B
is inscribed and the point P being the intersection between the lines AX
and BY is the radical center for the given circles and the circumcircle
of this quadrilateral. I.e. it belongs to the radical axis of these circles
(see the �gure). Obviously, any point of the radical axis belongs to the
required locus.
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17. (À.Myakishev, 9�11) Given triangle ABC and a ruler with two marked
intervals equal to AC and BC. By this ruler only, �nd the incenter of
the triangle formed by the midlines of triangle ABC.

Solution. Let us construct the segments BC1 = CB1 = BC on the
extension of the side AB beyond B and on the extension of the side AC
beyond C respectively. Let A′ be the point of intersection between BB1

and CC1. Then the line AA′ passes through the point required (see the
�gure).
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Clearly, since the triangles BCB1 and CBC1 are isosceles, the lines
BB1 and CC1 are parallel to bisectors of the angles C and B. Therefore
under the homothety with center A and ratio of 1/2 these lines will map
into the bisectors of angles of the middle triangle, whereas the point A′

will map into the center in question. Similarly, making use of the second
segment marked on the ruler we can construct the line passing through
B and the point in question.

18. (À.Abdullayev, Azerbaijan, 9�11) Prove that the triangle having sides
a, b, c and area S satis�es the inequality

a2 + b2 + c2 − 1

2
(|a− b|+ |b− c|+ |c− a|)2 ≥ 4

√
3S.

Solution one. Let C be the middle angle of the triangle. Then |b −
c|+ |c− a| = |a− b| and the left part of the ineqity equals

a2 + b2 + c2 − 2(a− b)2 = 4ab− (a2 + b2 − c2) = 2ab(2− cosC).

As the right part of the inequation is equal to 2
√
3ab sinC, the given

inequity is equivalent to

2− cosC ≥
√
3 sinC.
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However cosC+
√
3 sinC = 2 cos(C− π

3 ), so this inequity always holds
and turns into equation only if C = 60◦.

Solution two. Assuming again that c is the middle side of the triangle,
let us denote x = p−a, y = p−b, z = p−c, where p is the half-perimeter,
and let us write the left part as

a2+b2−(a−b)2+c2−(a−b)2 = 2ab+4xy = 2(x+z)(y+z)+4xy = 2pz+6xy.

Since the right part is equal to 4
√
3pxyz, the inequality takes the form

pz + 3xy − 2
√
3pxyz = (

√
px−

√
3xy)2 ≥ 0.

19. (V.Protasov, 10-11) Given parallelogram ABCD such that AB = a,
AD = b. The �rst circle has its center at vertex A and passes through
D, and the second circle has its center at C and passes through D. A
circle with center B meets the �rst circle at points M1, N1, and the
second circle at points M2, N2. Determine the ratio M1N1/M2N2.

Solution. The points M1, N1 are symmetrical about the line AB, so
M1N1 equals double distance from M1 to AB. Similarly M2N2 equals
double distance from M2 to BC. Additionally, CM2 = CD = AB,
AM1 = AD = BC, BM1 = BM2, which means that triangles ABM1

and CM2B are equal. Therefore the required ratio which equals the ratio
of the altitudes of these triangles, is inverse to the ratio of respective
sides, i.e. it is equal to b/a (see the �gure).
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20. (À.Zaslavskiy, 10�11) a) Some polygon has the following property: if a
line passes through any two points which bisect its perimeter then this
line bisects the area of the polygon. Is it true that the polygon is central
symmetrical?

b) Is it true that any �gure with the property from part a) is central
symmetrical?

Solution. à) Yes, it is. LetX, Y be two points splitting the perimeter of
the polygon in halves, which are not its vertices; let X ′, Y ′ be the points
on the same sides that satisfy condition XX ′ = Y Y ′; let P be the point
of intersection for XY and X ′Y ′. Since each of these two lines splits
the polygon into two pol with equal areaygons, the areas of triangles
PXX ′ and PY Y ′ are equal. As XX ′ = Y Y ′, the altitudes dropped on
these sides are also equal. Furthermore ∠XPX ′ = ∠Y PY ′ as vertical.
Therefore these triangles are congruent. If the lines XX ′ and Y Y ′ are
not parallel, then the congruence of angles PX ′X and PY Y ′ follows.
However if the pair of X, Y is �xed then this equation cannot hold for
arbitrary X ′, Y ′. So, when one of the opposite points moves along a
side of the polygon, the other moves along the parallel side, while the
lengths of these sides are equal. It means that the polygon has a center
of symmetry.

Remark. The above argument implicates that no two sides of the
polygon lie on the same line. If this condition does not hold then the
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polygon can possess the required property while not having a center of
symmetry (see the �gure).

Fig. 20a

b) No, it isn't. Let, for instance, ABC be a regular triangle, whereas
A′, B′, C ′ be the midpoints of its sides. Let us draw six circle arcs 60◦

each with centers at A′, B′, C ′ and endpoints A, B, C, A′, B′, C ′. Let
X, Y be a pair of points that bisect the perimeter of the shape formed
by these circle arcs, and assume that the point X belongs, for instance,
to the circle arc AB′. Then the point Y belongs to the circle arc A′B,
and the circle arcs AX and A′Y are equal. Since the circle arcs AB′

and A′B are parts of the same circle with center at C ′ it means that
∠AC ′X = ∠A′CY . Therefore the area of AXY B equals the sum of
areas of sectors C ′AX and C ′BY which are not dependent on location
of points X, Y , of the area of triangle C ′XY , that also does not depend
on location of these points, and of the areas of two constant segments.
Therefore this area is constant and evidently equal to half of the area
of the total shape (see the �gure).
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Remark. There are even some convex �gures with the above property,
for instance, the �gure formed by the line

x = 12 cosφ+cos 2φ+
1

2
cos 4φ, y = 12 sinφ−sin 2φ+1

2
sin 4φ, 0 ≤ φ ≤ 2π.

However the proof in this case is considerably more complicated.

21. (À.Zaslavskiy, B.Frenkin, 10�11) In a triangle, one has drawn middle
perpendiculars to its sides and has measured their segments lying inside
the triangle.

à) All three segments are equal. Is it true that the triangle is equilateral?

b) Two segments are equal. Is it true that the triangle is isosceles?

c) Can the segments have length 4, 4 and 3?

Solution. à) Yes, it is true. Observe that in the triangle ABC we have
∠A < ∠B ≤ ∠C. Then the perpendicular bisectors to sides AC and
BC intersect with the side AB. The segments of these perpendiculars
that lie within the triangle ABC have equal projections on the lines
perpendicular to AB, but they form unequal angles with these lines.
Hence they are not equal.

Now assume ∠A ≤ ∠B < ∠C. Then the perpendicular bisectors to
AB and AC cross AC and AB respectively and therefore they cut
similar yet unequal triangles from the triangle ABC. The segments of
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perpendicular bisectors lying within the triangle are the respective sides
of these triangles and therefore they are not equal.

Observe that the above reasoning implies that the segment of a perpendicular
bisector with minimal length is the one dropped to the middle side of
the triangle.

b) No, it isn't. For instance, consider the triangle with angles A = π/8,
B = π/4, C = 5π/8 and the circumcircle of unit radius. Then the
perpendicular bisector to AB intersects the side AC, and its segment
within the triangle is equal to AB tg∠A/2 = sin(5π/8) tg(π/8) =
cos(π/8) tg(π/8) = sin(π/8). The perpendicular bisector toBC intersects
AB, and the length of the respective segment is equal to BC tg∠B/2 =
sin(π/8). Therefore these segments are equal. Any triangle with ∠A <

∠B < ∠C and cosA tgB = sinC also meets the required condition.

c) No, it isn't. If the triangle is isosceles then as follows from part a) the
segments of perpendicular bisectors to the lateral sides are shorter then
the altitude to the base. If ∠A < ∠B < ∠C and cosA tgB = sinC,
then the ratio of perpendicular bisectors' segments to the longest and the
middle sides of the triangle is equal to the ratio of these sides themselves.
I.e.

sinC

sinB
=

cosA

cosB
=

cosB√
1− 2 cosB + 2 cos3B

.

Examining the right side of this equation we can conclude that its
maximum is less then 4/3.

22. (À.Khachaturyan, 10�11) à) All vertices of a pyramid lie on the facets of
a cube but not on its edges, and each facet contains at least one vertex.
What is the maximal possible number of the vertices of the pyramid?

b) All vertices of a pyramid lie in the facet planes of a cube but not
on the lines including its edges, and each facet plane contains at least
one vertex. What is the maximal possible number of the vertices of the
pyramid?

Answer. à)13. b) Arbitrary large number.

Solution. à) The section of a cube by the plane of the pyramid's base
intersects all its facets and is therefore a convex hexagon. The vertices
of the base lie on the sides of this hexagon but not in its vertices. It is
easily seen that if any side contains more than two vertices of the base
then it is impossible to link them by a non-self-intersecting polygonal
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line lying within the hexagon. Therefore the base has no more than 12
vertices, and the pyramid has no more than 13 vertices. A pyramid with
13 vertices evidently exists.

b) In the considered case the vertices of the base can belong to the lines
containing the sides of the hexagon, and their number can be arbitrarily
large (see the �gure).

Fig. 22

23. (V.Protasov, 10�11) In the space, given two intersecting spheres of
di�erent radii and a point A belonging to both spheres. Prove that there
is a pointB in the space with the following property: if an arbitrary circle
passes through points A and B then the second points of its meet with
the given spheres are equidistant from B.

Solution. Draw a line through A that is parallel to the line containing
centers of the given spheres, and �nd secondary points C, D of its
intersection with the spheres. Let us show that the midpoint B of the
segment CD is the required point. Choose an arbitrary circle passing
through A and B, and consider the cuts of the spheres by the plane of
this circle. These cuts are two circles one of which passes through A and
C, another passes through A and D. The centers of these circles are at
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the projections O1, O2 of the centers of spheres on the plane of the cut.
Therefore the lines O1O2 and CD are parallel. Thus it su�ces to prove
the plane version of the problem statement.

Let X1, X2 be the secondary points of intersection of the circle passing
through A and B with the given circles; let A′ be the secondary point of
intersection of the given circles. Then O1O2 is the midline of the triangle
A′CD, i.e. CB = BD = O1O2. It follows that O1B = O2D = O2X2,
O2B = O1C = O1C1. In addition, the center O of the circle ABX1X2 is
equidistant fromO1 andO2, therefore∠BO1X1 = ∠BO1O+∠OO1X1 =
∠BO1O + ∠AO1O = ∠AO2O + ∠BO2O = ∠BO2O + ∠OO2X2 =
∠BO2X2. So the triangles O1X1B and O2BX2 are equal and hence
BX1 = BX2 (see the �gure).
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Fig. 23

24. (I.Bogdanov, 11) Let h be the least altitude of a tetrahedron, and d
the least distance between its opposite edges. For what values of t the
inequality d > th is possible?

Answer. For t < 3/2.
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Solution. Let ABC be the facet of the tetrahedron ABCD with the
largest area. Then its volume is equal to V = SABCh/3. On the other
hand it is equal to half the product of lengths of the opposite edges and
the distance between them multiplied by the sine of the angle between
them. Let A′B′C ′ be the triangle whose midlines are the sides of ABC.
Then, for instance, SA′B′D = AB·CD sinφ, where φ is the angle between
AB and CD. Since the sum of areas of lateral facets of the tetrahedron
is greater than the area of its base, the area of triangle A′B′C ′ does
not exceed the triple maximal area of triangles A′B′D, B′C ′D, C ′A′D,
i.e. d < 3h/2. This inequality cannot be strengthened, because if one
takes a regular pyramid and its altitude tends to zero, then the ratio
d/h tends to 3/2.
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