
IV RUSSIAN GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The final round. Solutions. 8 form. First day
1. (B.Frenkin) Does a convex quadrilateral without parallel sidelines exist such that

it can be divided into four equal triangles?
Answer. Yes. See for example fig.8.1.

Fig.8.1.

2. (F.Nilov) Given right triangle ABC with hypothenuse AC and ∠A = 50◦. Points
K and L on the cathetus BC are such that ∠KAC = ∠LAB = 10◦. Determine the
ratio CK/LB.
Answer. 2.
Solution. Let L′ is the reflection of L in AB (fig.8.2). As ∠L′KA = 50◦ = ∠KAL′,
we have L′K = L′A = LA. On the other hand, ∠CAL = 40◦ = ∠ACL, i.e.
AL = CL. So CK = LL′ = 2LB.
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Fig.8.2.

3. (D.Shnol) Two opposite angles of a convex quadrilateral with perpendicular diagonals
are equal. Prove that a circle can be inscribed in this quadrilateral.
Solution. Let O be the common point of the diagonals in quadrilateral ABCD with
∠B = ∠D. Suppose that OB > OD. Then point D′ which is the reflection of D in
AC lies on segment OB (fig.8.3). Thus by the property of external angle ∠AD′O >
∠ABO, ∠CD′O > ∠CBO. But then ∠D = ∠AD′C > ∠B � a contradiction. So
OB = OD and AC is the symmetry axis of ABCD. Thus the bisectors of angles
B, D and AC concur and their common point is the incenter of ABCD.
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Fig.8.3.

4. (F.Nilov, A.Zaslavsky) Let CC0 be a median of triangle ABC; the medial perpendiculars
to AC and BC intersect CC0 in points A′, B′; C1 is the meet of lines AA′ and BB′.
Prove that ∠C1CA = ∠C0CB.



Solution. Since triangles CAA′, CBB′ are isosceles, we have ∠CAA′ = ∠C0CA,
∠CBB′ = ∠C0CB. So the distances from C to the lines AC1 and BC1 are equal
respectively to the distances from A and B to the line CC0. But these distances
are equal because CC0 is a median. Thus C is equidistant from C1A and C1B. So
∠CC1A = ∠CC1B, and ∠C1CA−∠C1CB = ∠C1BC−∠C1AC = ∠C0CB−∠C0CA
(fig.8.4). This is equivalent to the required assertion.
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Fig.8.4.

5. (A.Zaslavsky) Given two triangles ABC, A′B′C ′. Denote by α the angle between
the altitude and the median from vertex A of triangle ABC. Angles β, γ, α′, β′, γ′

are defined similarly. It is known that α = α′, β = β′, γ = γ′. Can we conclude that
the triangles are similar?
Answer. No.
Solution. Let the sidelines of A′B′C ′ be parallel to the medians of ABC. Then the
sidelines of ABC are parallel to the medians of A′B′C ′ and the angles between the
medians and the respective altitudes are the same for both triangles. But in general
case these triangles aren't similar.
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6. (B.Frenkin) Consider the triangles such that all their vertices are vertices of a given
regular 2008-gon. What triangles are more numerous among them: acute-angled or
obtuse-angled?
Answer. Obtuse-angled.
Solution. Fix two vertices A and B of one of given triangles. If they are the
opposite vertices of the 2008-gon then for any third vertex C triangle ABC is right-
angled. Otherwise denote by A′, B′ the vertices of the 2008-gon opposite to A, B
respectively. Triangle ABC is acute-angled iff C lies on the smallest of two arcs of
circumcircle, bounded by A′, B′. So for any fixed A, B the number of acute-angled
triangles having these two vertices is less than that of obtuse-angled. Thus the total
number of obtuse-angled triangles is greater as well.

7. (F.Nilov) Given isosceles triangle ABC with base AC and ∠B = α. The arc AC
constructed outside the triangle has angular measure equal to β. Two lines passing
through B divide the segment and the arc AC into three equal parts. Find the
relation α/β.
Answer. 1/3.
Solution. Let points X, Y divide the segment AC into three equal parts (AX =
XY = Y C); U , V be the common points of rays BX, BY with arc AC; Z be the
common point of BC and UV (fig.8.7). Since UV ‖ AC, we have V Z = UV = V C.
So ∠UCZ = 90◦. On the other hand, ∠ACU = ∠UCV = β/6, and ∠BCA =
90◦ − α/2. Consequently β = 3α.
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Fig.8.7.

8. (B.Frenkin, A.Zaslavsky) A convex quadrilateral was drawn on the blackboard.
Boris marked the centers of four excircles each touching one side of the quadrilateral



and the extensions of two adjacent sides. After this, Alexey erased the quadrilateral.
Can Boris define its perimeter?
Answer. Yes.
Solution. Let ABCD be the quadrilateral formed by the excenters, and the vertex
X of the original quadrilateral lies on AB. The sidelines of ABCD are the external
bisectors of the angles of original quadrilateral. So a billiard ball moving from X
along a side of the original quadrilateral, will after the reflections in the sides
of ABCD continue to move along the sides. "Straighten"the trajectory of ball
constructing quadrilaterals: A1BCD1 � the reflection of ABCD in BC, A2B1CD1

� the reflection of A1BCD1 in CD1, and A2B2C1D1 � the reflection of A2B1CD1

in D1A2. Then the trajectory of the ball transforms to segment XX ′, where X ′

lies on A2B2 and A2X
′ = AX (fig.8.8). Since ∠X ′XB = ∠XX ′A2, we have

A2B2 ‖ AB. Thus joining any other point of segment AB with the respective point
of segment A2B2, after inverse reflections we obtain another quadrilateral satisfying
the conditions of the problem. So there exists an infinite set of quadrilaterals having
points A, B, C, D as excenters. But the perimeters of all these quadrilaterals are
equal to XX ′ = AA2 and so don't depend on X.
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Fig.8.8.
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1. (A.Zaslavsky) A convex polygon can be divided into 2008 equal quadrilaterals. Is it

true that this polygon has a center or an axis of symmetry?
Answer. No. Take for example the trapezoid with bases equal to 1 and 2, and
lateral sides equal to 1 and

√
2. Using the construction of fig.9.1, we can compose

from such trapezoids a hexagon which isn't symmetric.

Fig.9.1.

2. (F.Nilov) Given quadrilateral ABCD. Find the locus of points such that their
projections to the lines AB, BC, CD, DA form a quadrilateral with perpendicular
diagonals.
Solution. If the original quadrilateral is a trapezoid then the projections of a point
in the locus to the lateral sidelines lie on a line parallel to the bases. It is evident
that the set of such points is the line passing through the common point of lateral
sidelines. Also it is clear that the required locus for a rectangle is the whole plane,
and that for a parallelogram distinct from a rectangle such points don't exist.
Let X be the common point of lines AB and CD, Y be a common point of lines
BC è DA. Denote the projections of point P to AB, BC, CD, DA by K, L, M ,
N , and let O be the common point of KM and LN (fig.9.2). Since quadrilaterals
Y LPN and XKPM are cyclic, we have ∠PLN = ∠PY A and ∠PMK = ∠PXA.
So ∠MOL = π − ∠C − ∠PLN − ∠PMK = π − ∠C − (∠A − ∠XPY ). Thus an
equality ∠MOL = π/2 is equivalent to ∠XPY = ∠A + ∠C − π/2. So the required
locus is a circle passing through X and Y .
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Fig.9.2.

3. (R.Pirkuliev) Prove the inequality

1√
2 sin A

+
1√

2 sin B
+

1√
2 sin C

≤
√

p

r
,

where p and r are the semiperimeter and the inradius of triangle ABC.
Solution. Let R and S be the circumradius and the area of triangle ABC. Using
the sinuses theorem and the formulaes S = pr = abc/4R, transform the right part
of inequality:

√
p
r

= p√
S

= R(sin A+sin B+sin C)√
2R2 sin A sin B sin C

=
√

sin A
2 sin B sin C

+
√

sin B
2 sin C sin A

+
√

sin C
2 sin A sin B

.

By Cauchi inequality:

2√
sin A

≤
√

sin B

sin C sin A
+

√
sin C

sin A sin B
.

Summing this inequality with two similar ones, we obtain the required assertion.

4. (F.Nilov, A.Zaslavsky) Let CC0 be a median of triangle ABC; the medial perpendiculars
to AC and BC intersect CC0 in points A′, B′; C1 is the common point of AA′ and
BB′. Points A1, B1 are defined similarly. Prove that circle A1B1C1 passes through
the circumcenter of triangle ABC.
Solution. By the solution of problem 8.4, lines AA1, BB1, CC1 concur in point L,
and point C1 lies on the circle passing through A, B and the circumcenter O of ABC.
Hence ∠OC1L = ∠AC1C−∠AC1O = ∠AC1C−∠ABO = (π−∠C)−(π/2−∠C) =
π/2, and C1 lies on the circle with diameter OL. Similarly A1 and B1 lie on the same
circle.



5. (N.Avilov) Can the surface of a regular tetrahedron be glued over with equal regular
hexagons?
Solution. Yes. For example, sticking together a tetrahedron from the development
in fig.9.5 and cutting its surface by bold lines, we obtain two equal regular hexagons
(obscure and light).

Fig.9.5.
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6. (B.Frenkin) Construct the triangle, given its centroid and the feet of an altitude
and a bisector from the same vertex.
Solution. Let C1, C2 be the feet of the bisector and of the altitude from vertex C of
triangle ABC, and M be its centroid. It is evident that C lies on the perpendicular
from C2 to line C1C2. The projection of M to this perpendicular divides the altitude
in relation 2 : 1. This enables to construct point C and the midpoint C0 of side AB.
Let C ′ be the common point of CC1 and perpendicular l to C1C2 from C0. Then
C ′ lies on the circumcircle of ABC (fig.9.6). So the medial perpendicular to CC ′

intersect l in the circumcenter O. Constructing the circumcircle, we find A, B as its
common points with C1C2.
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Fig.9.6.

7. (A.Zaslavsky) The circumradius of triangle ABC is equal to R. Another circle with
the same radius passes through the orthocenter H of this triangle and intersect its
circumcirle in points X, Y . Point Z is the fourth vertex of parallelogram CXZY .
Find the circumradius of triangle ABZ.
Answer. R.
Solution. We will prove that Z lies on circle ABH with radius equal to R. Let
H ′ be the second common point of circles XY H and ABH, C ′ be the orthocenter of
triangle ABH ′ (fig.9.7). Then C ′ lies on the circle which is the reflection of ABH in
AB, i.e. on the circumcircle of ABC. So CH = C ′H ′ = 2R| cos C| and CHH ′C ′ is
a parallelogram. Since CC ′ and HH ′ are the chords of equal circles ABC and



XHY , they are symmetric wrt the midpont of segment XY . Thus, XCY H ′ is the
parallelogram and H ′ coincides with Z.
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Fig.9.7.

8. (J.-L.Aime, France) Points P , Q lie on the circumcircle ω of triangle ABC. The
medial perpendicular l to PQ intersects BC, CA, AB in points A′, B′, C ′. Let A”,
B”, C” be the second common points of l with the circles A′PQ, B′PQ, C ′PQ.
Prove that AA”, BB”, CC” concur.
Solution. Let X, Y be the common points of ω and l. Consider the central projection
from ω to l with center C. We obtain that (AB; XY ) = (B′A′; XY ). Furthermore
since ∠A′PA − ∠B′PB − ∠XPY = π/2, we have (A′B′; XY ) = (A”B”; Y X). So
(AB; XY ) = (A”B”; Y X), and the common point of AA” and BB” lies on ω. Line
CC” also passes through this point.
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1. (B.Frenkin) An inscribed and circumscribed n-gon is divided by some line into two

inscribed and circumscribed polygons with different numbers of sides. Find n.
Answer. 3.
Solution. Suppose n 6= 3. If n > 4 then the boundary of at least one of obtained
polygons contains the segments of three sides of the original polygon. So the incircle
of this polygon coincides with the incircle of the original polygon. If n = 4 this also
is correct because two obtained polygons have different number of sides and so the
dividing line isn't a diagonal of original quadrilateral.
Thus the dividing line is tangent to the incircle of the original n-gon, hence one of
two parts obtained is a triangle. The vertices of the second part are n−1 vertices of
the original polygon and two points lying on its sides. Since n−1 ≥ 3, these vertices
determine a unique circle which passes through the remain vertex of the n-gon and
hence does not pass through the two points on the sides. Thus the cut polygon is
not inscribed.
Remark. It is possible to divide an arbitrary triangle by a line tangent to its incircle
into a triangle and an inscribed-circumscribed quadrilateral.

2. (A.Myakishev) Let triangle A1B1C1 be symmetric to ABC wrt the incenter of its
medial triangle. Prove that the orthocenter of A1B1C1 coincides with the circumcenter
of the triangle formed by the excenters of ABC.
Solution. Let H, I, O, M be the orthocenter, the incenter, the circumcenter, and
the centroid of triangle ABC, I0 be the incenter of its medial triangle. Obviously,
the orthocenter H1 of triangle A1B1C1 is symmetric to H wrt I0. On the other
hand, in the triangle formed by the excenters of ABC, I is the orthocenter, ABC
is the orthotriangle, and the circumcircle of ABC is the nine-points circle. So the
circumcenter of excenter triangle is symmetric to I wrt O. Consider triangle IHH1.
Its median II0 passes through M and is divided by this point in relation 2 : 1. So
M is the centroid of this triangle. But M also divides segment HO0 in relation 2 : 1.
Thus O is the midpoint of IH1 (fig.10.2)

�

�

� �

� ��

�

Fig.10.2.



3. (V.Yasinsky, Ukraine) Suppose X and Y are the common points of two circles ω1

and ω2. The third circle ω is internally tangent to ω1 and ω2 in P and Q respectively.
Segment XY intersects ω in points M and N . Rays PM and PN intersect ω1 in
points A and D; rays QM and QN intersect ω2 in points B and C respectively.
Prove that AB = CD.
Solution. Point P is the homothety center of circles ω and ω1. So AD ‖ MN and
segment AD is perpendicular to the center line of circles ω1 and ω2. Thus points A
and D are symmetric wrt this line. Similarly B and C are symmetric wrt this line,
and so AB = CD (fig.10.3).
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Fig.10.3.

4. (A.Zaslavsky) Given three points C0, C1, C2 on the line l. Find the locus of incenters
of triangles ABC such that points A, B lie on l and the feet of the median, the
bisector and the altitude from C coincide with C0, C1, C2.
Answer. The perpendicular to l passing through point C ′ on segment C0C2, such
that C0C

′2 = C0C1 · C0C2.
Solution. Let C3, C4 be the points of contact between side AB and the incircle
and the excircle of triangle ABC. Then C0 is the midpoint of segment C3C4. On
the other hand, points C3, C4 are the projections of incenter I and excenter Ic to
AB (fig.10.4). Since these centers lie on CC1, we have

C2C3

C2C4

=
CI

CIc

=
r

rc

=
C1I

C1Ic

=
C1C3

C1C4

.
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Fig.10.4.

This implies that C3 coincides with C ′. Now take an arbitrary point I, the projection
of which to l coincides with C3. The perpendiculars to l from C2 and from C0

intersect line C1I in point C and in the circumcenter of triangle IAB. Finding the
common points of the corresponding circle with l, we obtain the required triangle.

5. (I.Bogdanov) A section of a regular tetragonal pyramid is a regular pentagon. Find
the ratio of its side to the side of the base of the pyramid.
Answer. 3−√5√

2
.

Solution. Let the plane of the section meet sides CD and DA of pyramid's base
ABCD in points X, Y . Then pentagon ABCXY is the central projection of a
regular pentagon. So the double relation of A, Y , D and the point at infinity of line
AD is equal to double relation of four points in which one sideline of the regular
pentagon intersects its remaining sidelines (fig.10.5). Thus:

DY

AD
=

3−√5

2
.
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fig.10.5.

Point X divides segment CD in the same ratio. So the required ratio is

XY

AB
=

3−√5√
2

.

Remark. Since the ratio of a side of the pentagon to a side of the base is determined
unambiguously, the ratio of a lateral edge to a side of the base also is determined
unambiguously. On the other hand, the planes of 8 faces of an icosahedron bound
a regular octahedron. So the pyramid satisfying the conditions of the problem is a
half of an octahedron, and its lateral edge is equal to the side of the base.
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6. (B.Frenkin) The product of two sides in a triangle is equal to 8Rr, where R and
r are the circumradius and the inradius of the triangle. Prove that the angle between
these sides is less than 60◦.
Solution. Let the product of sides AC = b and BC = a of triangle ABC be equal
to 8Rr. Since the area of ABC is S = pr = abc/4R where p is the semiperimeter,
we have 4prR = abc = 8Rrc. So p = 2c or a + b = 3c. As b < a + c, this implies
that 2a > 2c and c < a. Similarly c < b. Thus C as the strictly smallest angle of the
triangle is less than 60◦.

7. (F.Nilov) Two arcs with equal angular measure are constructed on the medians AA′

and BB′ of triangle ABC towards vertex C. Prove that the common chord of the
respective circles passes through C.
Solution. Let the circle constructed on AA′ intersect AC in point X, and the circle
constructed on BB′ intersect BC in point Y (fig.10.7). Since ∠AXA′ = ∠BY B′,
triangles CXA′ and CY B′ are similar. So CX/CA′ = CY/CB′ and

CX · CA = 2CX · CB′ = 2CY · CA′ = CY · CB.
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Thus the degrees of point C wrt both circles are equal and C lies on their radical
axis.

8. (A.Akopyan, V.Dolnikov) Given a set of points inn the plane. It is known that
among any three of its points there are two such that the distance between them
doesn't exceed 1. Prove that this set can be divided into three parts such that the
diameter of each part does not exceed 1.



Solution. Call two points 1-close if the distance between them does not exceed 1.
If the diameter of the given set V doesn't exceed

√
3 then V can be covered by a

circle with radius 1. We can choose this circle so that it contains some points of V
on its boundary. Denote the center of the circle and some point of V on its boundary
by X and Y respectively.
Note that any two points in set V \B(Y, 1) are 1-close. So the diameter of this set
doesn't exceed 1. Furthermore segment [X,Y ] divides V

⋂
B(Y, 1) into two parts

with diameters less or equal to 1. Thus we obtain the required dissection.
Let now two points X,Y ∈ V exist such that d(X, Y ) >

√
3d. Then the join of sets

V \ B(X, 1), V \ B(Y, 1) and V
⋂

B(X, 1)
⋂

B(Y, 1) contains V and each of these
sets has the diameter less or equal to 1. In fact, any two points of V \ B(X, 1) or
V \ B(Y, 1) are 1-close. Furthermore set V

⋂
B(X, 1)

⋂
B(Y, 1) lies inside the set

B(X, 1)
⋂

B(Y, 1) with diameter less or equal to 1 (this diameter is the segment
between common points of circles S(X, 1) and S(Y, 1)).


