
X GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
THE CORRESPONDENCE ROUND. SOLUTIONS

1. (N.Moskvitin, V.Protasov) (8) A right-angled triangle ABC is given. Its cathetus AB is
the base of a regular triangle ADB lying in the exterior of ABC, and its hypothenuse AC
is the base of a regular triangle AEC lying in the interior of ABC. Lines DE and AB
meet at point M . The whole configuration except points A and B was erased. Restore
the point M .

Solution. Since ∠DAB = ∠EAC = 60◦, we have ∠DAE = ∠BAC, therefore triangles
ADE and ABC are equal and ∠ADE = 90◦. Thus triangleADM is right-angled with
∠A = 60◦. Hence AD = AB = AM/2 (fig.1), i.e. M is the reflection of A with respect
to B.
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2. (K.Knop) (8) A paper square with sidelength 2 is given. From this square, can we cut
out a 12-gon having all sidelengths equal to 1, and all angles divisible by 45◦?

Solution. Yes, see. fig.2. Points A, B, C, D lying on the medial lines of the given square
are the vertices of the square with the side equal to

√
2− 1.

A

B

C

D

Fig.2

3. (N.Moskvitin) (8) Let ABC be an isosceles triangle with base AB. Line ℓ touches its
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circumcircle at point B. Let CD be a perpendicular from C to ℓ, and AE, BF be the
altitudes of ABC. Prove that D, E, F are collinear.

Solution. Let CH be the third altitude of the triangle. Since ∠CBD = ∠CAB =
∠CBH, the triangles CBD and CBH are equal, i.e. BD = BH. Also EH is the median
of right-angled triangle AEB, thus EH = HB = BD and ∠BEH = ∠EBH = ∠EBD.
Therefore EDBH is a parallelogram (fig.3) and DE ∥ AB. Since EF also is parallel to
AB, lines DE and EF coincide.
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4. (B.Frenkin) (8) A square is inscribed into a triangle (one side of the triangle contains two
vertices and each of two remaining sides contains one vertex). Prove that the incenter of
the triangle lies inside the square.

Solution. Let ABC be a triangle with incenter I, let vertices K and L of inscribed
square lie on side AB, vertex M lie on AC and vertex N lie on BC (obviously angles A
and B are equal). Take a perpendicular IH from I to AB and a segment DE passing
through I parallel to AB with endpoints D and E lying on AC and BC respectively. We
have to prove that DE > IH and H ∈ KL. The first assertion is true because IH = r
and DE > 2r, where r is the radius of the incircle. Now let the extension of IH beyond I
meet one of the sides of ABC at point F . We can suppose that F ∈ AC. Then H and K
lie on the same side of L. Take a line passing through F , parallel to AB and intersecting
BC at point G. It is sufficient to prove that FG < FH: then I and L lie on the same
side of K and I ∈ KL.

Note that FH contains a diameter of the incircle, thus F lies outside the incircle and
FH > 2r. The perpendicular through F doesn’t intersect the incircle. Therefore the
touching points of AC and BC with the incircle lie between FG and AB. Hence the
corresponding chord is greater than FG. Since it is less than 2r, we have FG < 2r < FH,
q.e.d.

Comment. We see from the solution that a square can be replaced by a rectangle such
that its greater side lies on the base of the triangle and is not greater than doubled smaller
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side.

5. (B.Frenkin) (8) In an acute-angled triangle ABC, AM is a median, AL is a bisector and
AH is an altitude (H lies between L and B). It is known that ML = LH = HB. Find
the ratios of the sidelengths of ABC.

Answer. AB : AC : BC = 1 : 2 : 3
√
2

2
.

Solution. By the property of the bisector AC : AB = LA : LB = 2 : 1. This follows
also from the property of the median: take on the extension of AB beyond B segment
BD = AB. Then BC is a median of the triangle ADC, and since AL : LB = 2 : 1, we
obtain that AL also lies on a median. But AL is the bisector, therefore AC = AD = 2AB.
Now by the Pythagor theorem we have: AC2−AH2 = AB2−BH2, or 4AB2−25BH2 =
AB2 −BH2, thus AB = 2

√
2BH and BC : AB = 6BH : AB = 3

√
2

2
.

6. (A.Zaslavsky) (8–9) Given a circle with center O and a point P not lying on it. Let X be
an arbitrary point of this circle, and Y be a common point of the bisector of angle POX
and the perpendicular bisector to segment PX. Find the locus of points Y .

Answer. The line perpendicular to ray OP and meeting it at the point on the distance
from O equal to (OP +OX)/2.

Solution. Let K, L be the projections of Y to OP and OX. By the definition of Y we
have Y P = Y X and Y K = Y L. Thus triangles Y KP and Y LX are equal i.e. XL = PK.
Also OL = OK. Since the lengths of segments OP and OX are not equal, one of them
is equal to the sum of OK and KP , and the second one is equal to their difference.
Therefore OK = (OP + OX)/2 (fig.6). It is evident that the sought locus contains all
points of the line.
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7. (V.Rumyantsev) (8–9) A parallelogram ABCD is given. The perpendicular from C to
CD meets the perpendicular from A to BD at point F , and the perpendicular from B
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to AB meets the perpendicular bisector to AC at point E. Find the ratio in which side
BC divides segment EF .

Answer. 1:2.

Solution. Let K be the reflection of A wrt B. Then E is the circumcenter of triangle
ACK. On the other hand, since BKCD is a parallelogram, we have AF ⊥ CK and F
is the orthocenter of triangle ACK. Therefore the median CB divides EF in ratio 1:2
(fig.7).
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8. (R.Sadykov) (8–9) Given a rectangle ABCD. Two perpendicular lines pass through point
B. One of them meets segment AD at point K, and the second one meets the extension of
side CD at point L. Let F be the common point of KL and AC. Prove that BF ⊥ KL.

First solution. Since ∠ABK = ∠CBL, triangles ABK and CBL are similar. Thus
triangles ABC and KBL are also similar and ∠BKF = ∠BAF . Therefore quadrilateral
ABFK is cyclic and ∠BFK = 90◦ (fig.8).
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Second solution. Note that point B lies on the circumcircle of triangle KLD. Points
A and C are the projections of B to lines KD and DL. Thus by the Simson theorem the
projection of B to KL lies on AC, i.e, coincide with F q.e.d.
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9. (D.Shvetsov) (8–9) Two circles ω1 and ω2 touching externally at point L are inscribed
into angle BAC. Circle ω1 touches ray AB at point E, and circle ω2 touches ray AC at
point M . Line EL meets ω2 for the second time at point Q. Prove that MQ ∥ AL.
Solution. Let N be the second common point of ω1 and AL (fig.9). Then the composition
of the reflection in AL and the homothety with center A transforms arc NE to arc LM .
Therefore angles ALE and MQE are equal, which yields the assertion of the problem.
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10. (M.Kungozhin) (8–9) Two disjoint circles ω1 and ω2 are inscribed into an angle. Consider
all pairs of parallel lines l1 and l2 such that l1 touches ω1, and l2 touches ω2 (ω1, ω2 lie
between l1 and l2). Prove that the medial lines of all trapezoids formed by l1, l2 and the
sides of the angle touch some fixed circle.
Solution. Let O1, O2 be the centers of the given circles, r1, r2 be their radii, O be the
midpoint of O1O2, l′1 be the line parallel to l1 and passing through O1, l′2 be the reflection
of l′1 in the medial line (fig.10). Then the distance from O2 to l′2 is equal to |r2 − r1|.
Using the homothety with center O1 and coefficient 1/2, we obtain that the distance d
from O to the medial line is equal to |r2 − r1|/2, i.e. all medial lines touch the circle with
center O and radius d.

O1 O2O

Fig.10

11. (M.Plotnikov) (8–9) Points K, L, M and N lying on the sides AB, BC, CD and DA of a
square ABCD are vertices of another square. Lines DK and NM meet at point E, and
lines KC and LM meet at point F . Prove that EF ∥ AB.
Solution. Denote the common points of lines MN and LM with AB as P and Q
respectively. Triangles AKN , BLK, CML and DMN are equal by the hypothenuse
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and the acute angle. Let AK = a and BK = b, then BL = CM = DN = a, CL =
MD = NA = b. Since triangles PKN and QLK are right-angled, we have PA · a = b2

and BK · b = a2. The similarity of triangles PEK and DEM implies that KE/DE =
(a+ b2/a)/b = (a2 + b2)/ab, but the similarity of QFK и CFM implies that FK/CF =
(b+ a2/b)/a = (a2 + b2)/ab. Thus KE/DE = FK/CF and EF ∥ AB, q.e.d.

12. (I.Makarov) (9–10) Circles ω1 and ω2 meet at points A and B. Let points K1 and K2 of ω1

and ω2 respectively be such that K1A touches ω2, and K2A touches ω1. The circumcircle
of triangle K1BK2 meets lines AK1 and AK2 for the second time at points L1 and L2

respectively. Prove that L1 and L2 are equidistant from line AB.

Solution. Since ∠K1AB = ∠AK2B, ∠K2AB = ∠AK1B, triangles AK1B and K2AB
are similar (fig.12). Using the sinus theorem we obtain:

sin∠K1AB

sin∠K2AB
=

AK1

AK2

=
AL2

AL1

,

which is equivalent to the assertion of the problem.
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13. (D.Prokopenko, D.Shvetsov) (9–10) Let AC be a fixed chord of a circle ω with center O.
Point B moves along the arc AC. A fixed point P lies on AC. The line passing through
P and parallel to AO meets BA at point A1; the line passing through P and parallel to
CO meets BC at point C1. Prove that the circumcenter of triangle A1BC1 moves along
a straight line.

Solution. Let Q be the second common point of line AC and circle A1PC1. Then
∠QA1C1 = ∠QPC1 = ∠QCO = ∠QAO = ∠APA1 = ∠QCA1. Therefore QA1 = QC1

and ∠A1QC1 = ∠AOC = 2∠A1BC1, i.e. Q is the circumcenter of triangle A1BC1 (fig.13).
Thus this circumcenter moves along line AC.
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14. (Folklore) (9–11) In a given disc, construct a subset such that its area equals the half of
the disc area and its intersection with its reflection over an arbitrary diameter has the
area equal to the quarter of the disc area.

Solution. Construct a disc, concentric to the given disc with the area equal to the half
of the area of the given disc. Bisect the inner disc by an arbitrary diameter and bisect
the external ring by the perpendicular diameter. Joining the half of the inner disc with
the half of the ring we obtain the sought subset.

15. (9–11) Let ABC be a non-isosceles triangle. The altitude from A, the bisector from B
and the median from C concur at point K.

a) (B.Frenkin) Which of the sidelengths of the triangle is medial?

b) (A.Zaslavsky) Which of the lengths of segments AK, BK, CK is medial?

Answer. a) AC. b) BK.

Solution. a) A bisector of a non-isosceles triangle lies between the corresponding altitude
and median, and its altitude lies between the bisector and the smaller of two adjacent
sides. Suppose that AB < AC. Then the bisector of angle A meets the bisector of angle
B at a point, lying between K and AC. The bisector of angle C also passes through this
point. Since it lies between the median and the smaller of two adjacent sides, we obtain
that AC < BC. Thus AC is the medial side.

Let now AB > AC. Then similarly the incenter lies between AK and AB, the bisector
of angle C lies between CK and BC, thus AC > BC. Again AC is the medial side.

b) By the condition the altitude from A lies inside the triangle, i.e. angles B and C are
acute. Using the Ceva theorem we obtain that sinA = cosCtgB or tgC = tgB1−cosB

cosB
.
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Thus if B < 60◦ then C < B < 60◦ < A, and if B > 60◦ then C > B > 60◦ > A.

In the first case ∠KBA < 30◦ < ∠KAB and ∠KCB < C/2 < B/2 = ∠KBC, therefore
KA < KB < KC. Similarly in the second case we have KA > KB > KC.

Comment. Using the condition of the problem we can’t define which of the sides is the
greatest (the smallest), and which of segments KA, KC is the greatest (the smallest).

16. (D.Prokopenko) (9–11)Given a triangle ABC and an arbitrary point D.The lines passing
through D and perpendicular to segments DA, DB, DC meet lines BC, AC, AB at
points A1, B1, C1 respectively. Prove that the midpoints of segments AA1, BB1, CC1 are
collinear.

Solution. The circles with diameters AA1, BB1, CC1 pass through the bases of the
correspondent altitudes, thus the degrees of orthocenter H wrt these three circles are
equal. Therefore line DH is their common radical axis and their centers are collinear.

Comment. Applying the Menelaos theorem to triangle ABC and its medial triangle we
can obtain that A1, B1, C1 are also collinear.

17. (N.Moskvitin) (10–11) Let AC be the hypothenuse of a right-angled triangle ABC. The
bisector BD is given, and the midpoints E and F of the arcs BD of the circumcircles of
triangles ADB and CDB respectively are marked (the circles are erased). Construct the
centers of these circles using only a ruler.

Solution. We will use following well-known facts.

1.) If two parallel lines are given then we can bisect a segment lying on one of them,
using only a ruler.

2.) If two parallel lines are given then we can construct a line parallel to them and passing
through a fixed point not lying on these lines, using only a ruler.

Note now that EF is the perpendicular bisector to BD. Thus its common points K, L
with AB and BC are the vertices of a square BKDL. Using parallel lines BC and KD
bisect segment BC. Using parallel lines AB and DL construct the line parallel to them
trough the midpoint of BC. This line is the perpendicular bisector of BC, therefore it
meets EF at the circumcenter of triangle BCD. The circumcenter of triangle ABD can
be constructed similarly.

18. (A.Zaslavsky) (10–11) Let I be the incenter of a circumscribed quadrilateral ABCD. The
tangents to circle AIC at points A, C meet at point X. The tangents to circle BID at
points B, D meet at point Y . Prove that X, I, Y are collinear.

Solution. Let J be the second common point of circles AIC and BID. The inversion
wrt the incircle of ABCD transforms A, B, C, D to the vertices of a parallelogram, also
it transforms J to the center of this parallelogram. Therefore AJ/CJ = AI/CI, i.e line
IJ is the symedian of triangle AIC, thus this line passes through X. Similarly it passes
through Y .

19. (V.Yassinsky) (10–11) Two circles ω1 and ω2 touch externally at point P . Let A be a
point of ω2 not lying on the line through the centers of the circles, and AB, AC be the
tangents to ω1. Lines BP , CP meet ω2 for the second time at points E and F . Prove
that line EF , the tangent to ω2 at point A and the common tangent at P concur.
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Solution. The homothety with center P transforms B, C to E, F . Thus it transforms
A to the pole of line EF wrt ω2, i.e. the pole of EF lies on AP , which is equivalent to
the assertion of the problem.

20. (N.Beluhov) (10–11) A quadrilateral KLMN is given. A circle with center O meets
its side KL at points A and A1, side LM at points B and B1, etc. Prove that if the
circumcircles of triangles KDA, LAB, MBC and NCD concur at point P , then

a) the circumcircles of triangles KD1A1, LA1B1, MB1C1 and NC1D1 also concur at some
point Q;

b) point O lies on the perpendicular bisector to PQ.

Solution. Let A′
1B

′
1 be a variable chord in the circle, equal to A1B1, i.e. obtained

from A1B1 by rotation with center O. Easy computation of angles shows that the circle
(LAB) is in fact the locus of the intersection K ′ = AA′

1 ∩ BB′
1 as A′

1B
′
1 moves around

the circle. Thus, since P is the intersection of four such loci, the lines AP,BP,CP and
DP must intersect the circle in four points A′, B′, C ′, D′, forming a quadrilateral equal to
A1B1C1D1. Consider the rotation with center O, sending A′B′C ′D′ to A1B1C1D1, and
let it send P to some point Q. Then the lines A1Q,B1Q,C1Q and D1Q will intersect the
circle in four points, forming a quadrilateral, equal to ABCD. The same loci argument,
applied to the circumcircles of △KD1A1,△LA1B1,△MB1C1 and △NC1D1, shows that
they are concurrent in Q. Also, since OQ is the image of OP under the rotation, we have
OP = OQ, and (b) also follows.

21. (N.Poljansky, D.Skrobot) (10–11) Let ABCD be a circumscribed quadrilateral. Its incir-
cle ω touches sides BC and DA at points E and F respectively. It is known that lines
AB, FE and CD concur. The circumcircles of triangles AED and BFC meet ω for the
second time at points E1 and F1. Prove that EF ∥ E1F1.

Solution. Let R be the common point of BC and AD. Then R and the touching points
P и Q of the incircle with two remaining sides are collinear.

Let EE1 meet AD at point M . Consider three circles: the incircle of ABCD, AED and
AID, where I is the incenter of ABCD. It is clear that the radical axis of AID and the
incircle is the medial line of triangle FPQ. Since two remaining radical axes meet at M
we obtain that RM = MF (fig.21).
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Similarly, FF1 meets BC at point N , such that RN = NE. Therefore lines EE1 and FF1

are symmetric wrt the bisector of angle ERF . Thus points E1 and F1 are also symmetric
and EFF1E1 is an isosceles trapezoid.

22. (A.Blinkov) (10–11) Does there exist a convex polyhedron such that it has diagonals and
each of them is shorter than each of its edges?

Solution. Yes, take a regular triangle ABC with side equal to 1 and two points S1, S2,
symmetric wrt its plane and such that S1S2 < S1A = S1B = S1C < 1. It is evident that
the unique diagonal S1S2 of the obtained polyhedron is shorter than each of its edges.

23. (A.Akopyan) (11) Let A, B, C and D be a triharmonic quadruple of points, i.e

AB · CD = AC ·BD = AD ·BC.

Let A1 be a point distinct from A such that the quadruple A1, B, C and D is triharmonic.
Points B1, C1 and D1 are defined similarly. Prove that

a) A, B, C1, D1 are concyclic;

b) the quadruple A1, B1, C1, D1 is triharmonic.

Solution. a) Consider three spheres touching the given plane at points A, B, C and
externally touching each other. If the radii of these spheres are equal to x, y, z, then
AB = 2

√
xy etc. Thus there exist two spheres touching the plane at points D and D1

and touching three given spheres. Therefore we can construct eight spheres a, b, c, d, a1,
b1, c1, d1, touching the plane at A, B, C, D, A1, B1, C1, D1, and such that a and a1
touch b, c, d etc.

Take an inversion of the space with the center at the touching point of c and d. It
transforms these two spheres to two parallel planes, and the given plane, a and b will
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be transformed to three equal mutually touching spheres lying between these two planes.
The images of c1 and d1 have to touch these three spheres, also each of these two spheres
touches one of the planes, therefore they are symmetric wrt the plane containing the
centers of three remaining spheres. Thus the images of A, B, C1, D1 are complanar and
these points are concyclic.

b) Consider now an inversion with center D. It transforms d to the plane parallel to
ABC, and the images of a, b, c are three equal mutually touching spheres. Therefore
their touching points with the plane are the vertices of a regular triangle, and the image
of D1 is the center of this triangle. The images of A1, B1, C1 are the vertices of a regular
triangle with the same center, i.e. quadruple A1, B1, C1, D1 is triharmonic.

24. (F.Nilov) (11) A circumscribed pyramid ABCDS is given. The opposite sidelines of its
base meet at points P and Q in such a way that A and B lie on segments PD and PC
respectively. The inscribed sphere touches faces ABS and BCS at points K and L. Prove
that if PK and QL are complanar then the touching point of the sphere with the base
lies on BD.

First solution. Since P , Q, K and L are complanar, segments PL and QP meet at
point R lying on BS. Let T be the touching point of the insphere with the base of the
pyramid. Note that triangles QBK and QB are equal and triangles PBL and PBT
are equal (by the equality of the correspondent tangents). Similarly triangles RKB and
RLB are equal. Thus ∠QTB = ∠QKB = ∠PLB = ∠PTB. But in the circumscribed
pyramid ∠CTQ = ∠PTA and ∠CTD + ∠ATB = 180circ, therefore ∠PTB = 180◦.

Second solution. Consider a projective map saving the insphere and transforming
PQS to the infinite plane. It transforms the pyramid to the infinite prism, and by the
complanarity of PK and QL we obtain that the facets of this prism passing through AB
and BC form equal angles with plane ABCD. Thus the prism is symmetric wrt the plane
passing through BD and perpendicular to ABCD. It is clear that the touching point of
the insphere with the base lies on the plane of symmetry.
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