
XII Geometrical Olympiad in honour of I.F.Sharygin
The correspondence round. Solutions

1. (A.Trigub, 8) A trapezoid ABCD with bases AD and BC is such that AB = BD. Let
M be the midpoint of DC. Prove that ∠MBC = ∠BCA.

Solution. Let the line BM meet AD at point K. Then BCKD is a parallelogram,
therefore CK = BD = AB. Thus we obtain, since ABCK is an equilateral trapezoid,
that ∠BCA = ∠CBK = ∠MBC (fig.1).
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2. (L.Emelyanov, 8) Mark three nodes on a cellular paper so that the semiperimeter of the
obtained triangle would be equal to the sum of its two smallest medians.

Solution. Mark three vertices A, B, C of a right-angled triangle with legs AC = 6, BC =
4. Its median from C is equal to a half of hypothenuse AB, and its median from B by
the Pythagorean theorem is equal to

√
BC2 + (AC/2)2 =

√
42 + 32 = 5 = (AC+BC)/2,

hence ABC is the required triangle.

3. (E.Diomidov, 8) Let AH1, BH2 be two altitudes of an acute-angled triangle ABC, D be
the projection of H1 to AC, E be the projection of D to AB, F be a common point of
ED and AH1. Prove that H2F ∥ BC.

Solution. Let H be the orthocenter of triangle ABC. Using the Thales theorem we obtain
(fig.3)
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From this, also by the Thales theorem we obtain the required assertion.
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4. (A.Trigub, 8) In a quadrilateral ABCD ∠B = ∠D = 90◦ and AC = BC+DC. The point
P of ray BD is such that BP = AD. Prove that the line CP is parallel to the bisector of
angle ABD.

Solution. The assumption yields that the quadrilateral ABCD is inscribed into the circle
with diameter AC. Let K be a point of segment AC such that AK=BC (fig.4). Then
CK = CD, i.e. ∠CKD = ∠CDK. Now the triangles BCP and AKD are congruent
because AK = BC, AC = BP and ∠KAD = ∠CAD = ∠CBD = ∠CBP . Therefore
∠BCP = ∠AKP = 180◦ − ∠CKD = 90◦ + ∠ACD

2
= 90◦ + ∠ABD

2
. On the other hand,

∠CBP = 90◦ −∠ABD, thus ∠CPB = 180◦ −∠BCP −∠CBP = ∠ABD
2

, and this yields
the required assertion.
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5. (M.Volchkevich, 8) In quadrilateral ABCD AB = CD, M and K are the midpoints of
BC and AD. Prove that the angle between MK and AC is equal to the half-sum of angles
BAC and DCA.
Solution. Construct parallelograms ABMX and DCMY (fig.5). Since AX = BM =
MC = DY and AX ∥ BC ∥ DY , triangles AXK and DYK are congruent. Hence
XK = KY and ∠AKX = ∠DKY , i.e. K is the midpoint of segment XY . Also we have
MX = AB = CD = MY , therefore MK is the bisector of angle XMY , and this is
equivalent to the required assertion.
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Fig.5

6. (M.Volchkevich, 8) Let M be the midpoint of side AC of triangle ABC, MD and ME
be the perpendiculars from M to AB and to BC respectively. Prove that the distance
between the circumcenters of triangles ABE and BCD is equal to AC/4.

Solution. The segment between two circumcenters is a diagonal of the parallelogram
formed by the perpendicular bisectors to segments AB, BD, BE and BC. Hence the
projections of this segment to the lines AB and BC are equal to AD/2 and CE/2
respectively, i.e. they are equal to halves of the projections of segment AM = MC.
Therefore the segment between the circumcenters is also equal to AM/2 = AC/4.

Remark. From the solution we also obtain that this segment is parallel to AC.

7. (B.Frenkin, 8–9) Let all distances between the vertices of a convex n-gon (n > 3) be
different.

a) A vertex is called uninteresting if the closest vertex is adjacent to it. What is the
minimal possible number of uninteresting vertices (for a given n)?

b) A vertex is called unusual if the farthest vertex is adjacent to it. What is the maximal
possible number of unusual vertices (for a given n)?

Solution. a) Answer. 2.

Example. Take a segment AB and a convex broken line ℓ close to it and having the same
endpoints and the edges of equal length. Then ℓ and its reflection about AB form a convex
polygon such that only vertices A and B are uninteresting in it. In such a way we obtain
the desired n-gon for an arbitrary even n > 2. Now replace one of two copies of ℓ in the
n-gon by an analogous broken line with the number of edges greater by 1. In this way we
obtain a convex n-gon with an arbitrary odd n > 3, such that only the vertices A and B
are uninteresting. In both cases a small shift of the vertices makes all distances between
them different.

Estimation. Let A be an interesting vertex of a convex n-gon, and B be the vertex closest
to A. The diagonal AB divides the polygon into "right" and "left" parts. Let C be some
vertex or right part distinct from A and B. Suppose that C is interesting and let D be
the closest vertex. If D lies on the left part then in convex quadrilateral ACBD we have
AB+CD < AD+CB, i.e. the sum of the diagonals is less than the sum of two opposite
sides, a contradiction. Thus D lies on the right part or on the boundary of two parts.
Replacing vertices A,B to C,D we decrease the number of vertices in the right part.
Since this process can not be infinite there exists an uninteresting vertex in the right
part. Similarly there exists an uninteresting vertex in the left part therefore the number
of uninteresting vertices is not less than two.

b) Answer. 3.

Example. Take a triangle ABC with AB > BC > AC. “Break” side AC a little to obtain
a convex n-gon. Its unusual vertices are A,B,C only.

Estimation. Let X be an unusual vertex, Y be the farthest vertex and Z be the vertex
adjacent to Y and distinct from X. Then XZ < XY , hence angle XY Z is not the
maximal angle of triangle XY Z and hence is acute.
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Suppose that there exist more than three unusual vertices. A convex polygon has at most
three acute angles. Thus there are two unusual vertices A and C for which the same vertex
B is the farthest (and adjacent). Let D be an unusual vertex distinct from A,B,C and E
be the farthest from it (and adjacent) vertex. Without loss of generality we can suppose
that ABED is a convex quadrilateral. In this quadrilateral AB > AE,DE > BD, i.e.
the sum of the diagonals is less than the sum of two opposite sides, a contradiction.

8. (B.Frenkin, 8–9) Let ABCDE be an inscribed pentagon such that ∠B+∠E = ∠C+∠D.
Prove that ∠CAD < π/3 < ∠A.

Solution. From the assumption we have ⌣ AEDC+ ⌣ ABCD =⌣ BAED+ ⌣
CBAE, i.e. ⌣ BAE = 2 ⌣ CD. Since the sum of these two arcs is less than 2π, we
obtain that ⌣ CD < 2π/3 and ∠CAD > π/3. On the other hand, since ⌣ BAE < 4π/3
we obtain ⌣ BCDE > 2π/3 and ∠A > π/3.

9. (M.Panov, 8–9) Let ABC be a right-angled triangle and CH be the altitude from its right
angle C. The points O1 and O2 are the incenters of triangles ACH and BCH respectively;
P1 and P2 are the touching points of their incircles with AC and BC. Prove that the lines
O1P1 and O2P2 meet on AB.

Solution. Let O1P1 and O2P2 meet AB at points K1 and K2. Then by Thales theorem
AK1/K1B = AP1/P1C, AK2/K2B = CP2P2B. But these ratios are equal because
triangles AHC and CHB are similar.

Remark. From the solution we also obtain that the common point coincides with the
touching point of the incircle of ABC with AB (fig.9).
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10. (D.Shvetsov, 8–9) The point X moves along the side AB of triangle ABC, and the point
Y moves along its circumcircle in such a way that line XY passes through the midpoint
of arc AB. Find the locus of the circumcenters of triangles IXY , where I is the incenter
of ABC.

Solution. Let U be the midpoint of arc AB. Since ∠AY U = ∠ABU = ∠UAB, triangles
AUX and Y UA are similar, i.e. UX ·UY = UA2. It is known that U is the circumcenter
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of triangle IAB, therefore UI is a tangent to circle IXY (fig.10). Hence the center of
this circle lies on the perpendicular from I to CI. Since the circle IXY cannot lie inside
the circle ABC, the desired locus consists of two rays. The origins of these rays are the
centers of two circles touching circle ABC internally and touching the side AB, i.e. the
common points of the indicated line and the bisectors of the angles between AB and CU .
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11. (A.Blinkov, 8–10) Restore a triangle ABC by vertex B, the centroid and the common
point of the circumcircle and the symmedian going from B.

Solution. Let the median and the symmedian from B meet the circumcircle at points K
and L respectively. Since ∠ABK = ∠CBL, the points K and L are equidistant from the
midpoint M of AC (fig.11). From this we obtain the following construction.
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Extending the segment between B and the centroid by the half of its length we obtain
point M . Construct the circle through L centered at M and find its common point K with
BM , lying outside ray MB. Construct the circle BKL and find its common points A, C
with the line passing through M and parallel to KL. The triangle ABC is the required
one.

12. (S.Novikov, 9–10) Let BB1 be the symmedian of a nonisosceles acute-angled triangle
ABC. The ray BB1 meets the circumcircle of ABC for the second time at point L. Let
AHA, BHB, CHC be the altitudes of triangle ABC. The ray BHB meets the circumcircle
of ABC for the second time at point T . Prove that HA, HC , T , L are concyclic.

First solution. Since the points A, C, HA, HC are concyclic it is sufficient to prove that
the lines AC, HAHC and TL concur. Projecting the vertices of the harmonic quadrilateral
ABCL from T to the line AC we obtain that the common point of TL and AC forms a
harmonic quadruple with A, C, HB. The line HAHC meets AC at the same point.

Second solution. Let M be the midpoint of AC. Denote the circumcircles of triangles
ABC, AHC, BHAHC and the circumcircle of quadrilateral AHCHAC by ω, ω1, ω2, ω3

respectively. By the orthocenter’s property the points H and T are symmetric about AC.
Therefore the circles ω1 and ω are also symmetric. Let ω2 and ω meet for the second time
at a point P , and let ω2 and ω1 meet for the second time at a point N .

It is known (see. for example the paper of Y.Blinkov "The orthocenter, the midpoint of
the side, the common point of the tangents and one point more" , Kvant, №1, 2014) that
the points M , H and P are collinear, and ∠BPH = 90◦.

Let the lines BP and AC meet at point S. Note that H is the orthocenter of triangle
BMS. Therefore SH ⊥ BM . Since SH ⊥ BN (because ∠BNH = 90◦), we obtain that
N lies on BM .
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Let BM meet ω at a point D, and let the points N and N ′ be symmetric about AC. Since
M is the midpoint of AC, and the arcs ANC and AN ′C are symmetric we obtain that
the arcs AD and CN ′ of ω are equal. Line BD contains the median from B. Therefore
BN ′ the symmedian of triangle ABC, i.e. the points N ′ and L coincide.

The lines NH and LT are symmetric about AC therefore they meet at S. Since S is the
radical center of ω, ω1, ω2, ω3 we obtain that S lies on HCHA (fig.12). The degrees of S
wrt ω and ω2 are equal, i.e. SHA ·SHC = ST ·SL . Therefore HA, HC , T , L are concyclic.
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13. (R.Krytovsky, I.Frolov, 9–10) Given are a triangle ABC and a line ℓ meeting BC, AC,
AB at points La, Lb, Lc respectively. The perpendicular from La to BC meets AB and
AC at points AB and AC respectively. Point Oa is the circumcenter of triangle AAbAc.
Points Ob and Oc are defined similarly. Prove that Oa, Ob and Oc are collinear.

Solution. Let Z be an arbitrary point of line AB; X, Y be the common points of the
perpendicular from Z to AB with BC and CA respectively; and Z ′ be the circumcenter
of triangle CXY . Then ∠Z ′CA = π/2−∠CXY = ∠B, i.e. Z ′C touches the circumcircle
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of triangle ABC. If Z moves uniformly along AB then Z ′ also moves uniformly, and when
Z coincides with A or B then Z ′ lies on the tangent to the circumcirle at this point. Thus
if A′B′C ′ is the triangle formed by three tangents then Z ′ divides segment A′B′ in the
same ratio as Z divides AB. Applying this to points Oa, Ob, Oc and using the Menelaus
theorem we obtain the required asssertion.

14. ( A.Myakishev ) Let a triangle ABC be given. Consider the circle touching its circumcircle
at A and touching externally its incircle at some point A1. Points B1 and C1 are defined
similarly.

a) (9–10) Prove that lines AA1, BB1 и CC1 concur.

b) (10–11) Let A2 be the touching point of the incircle with BC. Prove that the lines
AA1 and AA2 are symmetric about the bisector of angle A.

Solution. a) Denote the first of the indicated circles by α. The point A is the center of
the positive homothehy of α and the circumcircle of triangle ABC, and the point A1 is
the center of the negative homothety of α and this incircle. Therefore the line AA1 passes
through the center of the negative homothety between the incircle and the circumcircle.
Two remaining lines also pass through this point.

b) It is known that the center of the negative homothety between the incircle and the
circumcircle is isogonally conjugated to the Gergonne point lying on the lines AA2, BB2

and CC2. The desired assertion immediately follows from this.

15. (L.Emelyanov, 9–11) Let O, M , N be the circumcenter, the centroid and the Nagel point
of a triangle. Prove that angle MON is right if and only if one of the triangle’s angles is
equal to 60◦.

Solution. Let I, H be the incenter and the orthocenter respectively of the triangle. The
homothety with center M and coefficient −1/2 maps N and H to I and O respectively.
Thus ∠MON = π/2 if and only if IO = IH. Let the line OH intersect the segments AC
and BC. Then since AI and BI are the bisectors of angles HAO and HBO, we obtain
that the points A, B, O, I, H are concyclic. Therefore ∠AOB = 2∠C = ∠AHB = π−∠C
and ∠C = 60◦. The inverse assertion can be proved similarly.

16. (A.Doledenok, 9–11) Let BB1 and CC1 be the altitudes of triangle ABC. The tangents to
the circumcircle of AB1C1 at B1 and C1 meet AB and AC at points M and N respectively.
Prove that the common point of circles AMN and AB1C1 distinct from A lies on the Euler
line of ABC.

Solution. Let A0, B0, C0 be the midpoints of BC, CA, AB; O, H be the circumcenter
and the orthocenter of triangle ABC. The projection Z of A to line OH lies on circles
AB1HC1 and AB0OC0, i.e., Z is the center of the spiral similarity mapping C0 to B0,
and C1 to B1. Thus if we prove that this similarity maps M to N we obtain that circle
AMN passes through Z.

Note that point A0 and the center of circle AB1HC1 are opposite on the nine points circle
of triangle ABC. Hence lines A0B1 and A0C1 are tangents to circle AB1HC1, i.e. they
coincide with lines B1M and C1N (fig.16). Projecting line AC to AB from point A0 we
obtain that (N,B1, B0,∞) = (C1,M,∞, C0) or NB0/NB1 = MC0/MC1, q.e.d.
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17. (D.Hilko, 9–11) Let D be an arbitrary point on the side BC of triangle ABC. The circles
ω1 and ω2 pass through A and D in such a way that BA touches ω1 and CA touches ω2.
Let BX be the second tangent from B to ω1, and CY be the second tangent from C to
ω2. Prove that the circumcircle of triangle XDY touches BC.

Solution. Take an inversion with center D and an arbitrary radius. Denote the images
of all points by primes (fig.17).
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Fig.17

The circumcircle of triangle XDA touches BA and BX. Therefore the circumcircles of
triangles B′DA′ and B′DX ′ touch line X ′A′. Then the radical axis B′D of these circles
bisects segment X ′A′. Similarly circles DC ′Y ′ and DC ′A′ touch line Y ′A′. Then their
radical axis DC ′ bisects segment A′Y ′. Hence B′C ′ is the medial line of triangle X ′A′Y ′

and X ′Y ′ ∥ B′D′. Observe now that X ′Y ′ is the image of the circle passing through
X,Y,D. Since X ′Y ′ ∥ B′C ′ this circle touches BC at point E.

18. (N.Moskvitin, 9–11) Let ABC be a triangle with ∠C = 90◦, and K, L be the midpoints
of the minor arcs AC and BC of its circumcircle. The segment KL meets AC at point
N . Find angle NIC where I is the incenter of ABC.

Answer. 45◦.

Solution. It is known that points K and P are the circumcenters of triangles IAC and
IBC respectively. Thus KP is the perpendicular bisector for segment CI. Then N is the
touching point of AC with the incircle and ∠NIC = 45◦ (fig.18).
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19. (A.Skutin, 9–11) Let ABCDEF be a regular hexagon. The points P and Q on tangents
to its circumcircle at A and D respectively are such that PQ touches the minor arc EF
of this circle. Find the angle between PB and QC.

Answer. 30◦.

Solution. Let T be the touching point of PQ with the circle and M , N be the midpoints
of segments AT , DT . Since PB and CQ are the symmedians of the triangles ABT , CDT
respectively, we have ∠ABP = ∠MBT , ∠DCQ = ∠NCT . Since MN is the medial line
of triangle ADT , we have MN = AD/2 = BC and MN ∥ BC (fig.19). Thus the angle
between PB and QC is equal to ∠PBM + ∠NCQ = ∠ABM + ∠NCD − ∠MBT −
∠TCN = 30◦.
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20. (D.Prokopenko, 10–11) The incircle ω of a triangle ABC touches BC, AC and AB at
points A0, B0 and C0 respectively. The bisectors of angles B and C meet the perpendicular
bisector to segment AA0 at points Q and P respectively. Prove that PC0 and QB0 meet
on ω.

Solution. The definition of points P , Q implies that they lie on the circumcircles of
triangles ABA0 and ACA0 respectively. Therefore triangle AA0Q is similar to triangle
B0A0I, and triangle AA0P is similar to triangle C0A0I (by three angles). Thus A0Q ·
A0B0 = A0I · A0A = A0P · A0C0. Furthermore ∠PA0Q = (∠B + ∠C)/2 = ∠B0A0C0,
hence triangles A0PQ and A0B0C0 are similar (fig.20). Then triangles A0B0P and A0C0Q
also are similar, i.e. the angle between B0P and C0Q is equal to angle B0A0C0, and this
yields the required assertion.
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21. (A.Shapovalov, 10–11) The areas of rectangles P and Q are equal, but the diagonal of P
is greater. Rectangle Q can be covered by two copies of P . Prove that P can be covered
by two copies of Q.

Solution. Let the width and the length of a rectangle mean its smaller and greater side
respectively. From the assumption we have that the width of P is less than the width of
Q, and the length of P is greater than the length of Q. If two copies of P cover Q, then
they cover the disc with the diameter equal to the width of Q, therefore this disc can
be covered by two bars with the width equal to the width of P . But the disc cannot be
covered by bars if the sum of their widths is less than the diameter. Thus the width of
P is at least the half of the width of Q. Then the length of Q is at least the half of the
length of P , and clearly P can be covered by two copies of Q.

22. (A.Yakubov, 10–11) Let MA, MB, MC be the midpoints of the sides of a nonisosceles
triangle ABC. The points HA, HB, HC lying on the corresponding sides and distinct from
MA, MB, MC are such that MAHB = MAHC , MBHA = MBHC , MCHA = MCHB. Prove
that HA, HB, HC are the bases of the altitudes of ABC.

Solution. Consider a point X in the space such that XMA = MAHB, XMB = MBHA,
XMC = MCHA. Consider tetrahedron XMAMBMC . The areas of all its faces are equal
because triangles XMAMB and HCMAMB are congruent. Hence all faces are congruent
and points HC , MA, MB, MC are concyclic. Therefore HC is the base of the altitude.

23. (F.Ivlev, 10–11) A sphere touches all edges of a tetrahedron. Let a, b, c and d be the
segments of the tangents to the sphere from the vertices of the tetrahedron. Is it true
that some of these segments necessarily form a triangle? (Not all those segments must be
used. Two segments may form one side of the triangle.)

Answer. No.
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Solution. Let β and γ be circles of radii 2 and 1 respectively that lie in the plane and
touch externally. Construct their common external tangent and inscribe circle δ into the
curvilinear triangle formed by two circles and this tangent. Clearly the radius of δ is less
than 1, so the radii of three circles do not form a triangle. Now replace the common
tangent of β and γ by circle α touching them externally with radius greater than 4.
Construct three spheres with the same centers and radii as α, β, γ. Finally construct the
sphere having the same radius as δ and touching three remaining spheres. The centers of
these four spheres form a tetrahedron, and their touching points lie on the sphere touching
all edges of this tetrahedron. The segments a, b, c, d are equal to the radii of α, β, γ, δ,
therefore they don’t form a triangle.

24. (I.I.Bogdanov, 11) A sphere is inscribed into a prism ABCA′B′C ′ and touches its lateral
faces BCC ′B′, CAA′C ′, ABB′A′ at points A0, B0, C0 respectively. It is known that
∠A0BB′ = ∠B0CC ′ = ∠C0AA

′.

a) Find all possible values of these angles.

b) Prove that segments AA0, BB0, CC0 concur.

c) Prove that the projections of the incenter to A′B′, B′C ′, C ′A′ are the vertices of a
regular triangle.

Solution. a) Answer. 60◦.

Denote the value of these angles by θ. Since the triangles CC ′A0 and CC ′B0 are congruent
we obtain that the angle A0CC ′ is also equal to θ. Similarly ∠B0AA

′ = ∠C0BB′ = θ.
Then 6θ = 3π − (∠C0AB + ∠C0AC + ∠A0BC + ∠A0CB + ∠B0CA+ ∠B0AC). But for
example ∠C0AB = ∠TAB, where T is the touching point of the sphere with face ABC.
From this and five similar equalities we obtain that the sum in the parentheses is equal
to the sum of the angles of triangle ABC, i.e. θ = 60◦.

b) By the previous part, ∠AB0C = ∠BA0C = 2π/3. Thus the lines AB0 and BA0 meet
CC ′ at the same point K such that CK = CB0 = CA0 (the triangles CB0K and CA0K
are regular because each of them has two angles equal to π/3). Therefore the points A,
B, A0, B0 are complanar, i.e. the lines AA0 and BB0 intersect. Similarly each of these
lines intersects CC0. Since these three lines are not complanar the points of intersection
coincide.

c) By the previous part, ∠ATB = ∠BTC = ∠CTA = 2π/3, i.e. T is the Torricelli point
of triangle ABC. Consider another sphere touching the plane ABC from the opposite
side at point T ′ and touching the planes of lateral faces. The ratios of distances from T
and T ′ to the sidelines of ABC are equal to the ratios of the cotangents and tangents
of the halves of the corresponding dihedral angles, therefore these points are isogonally
conjugate in triangle ABC. Hence the insphere touches the face A′B′C ′ at its Apollonius
point. The projections of this point to A′B′, B′C ′, C ′A′ coincide with the projection of
the center of the sphere and form a regular triangle.
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