
XIII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The correspondence round. Solutions

1. (A.Zaslavsky) (8) Mark on a cellular paper four nodes forming a convex quadrilateral
with the sidelengths equal to four different primes.

Solution. Take for example a quadrilateral with vertices A(−3, 0), B(0, 4), C(12,−1),
D(12,−8). Its sidelengths are AB = 5, BC = 13, CD = 7, DA = 17.

2. (L.Shteingarts) (8) A circle cuts off four right-angled triangles from rectangle ABCD.
Let A0, B0, C0 and D0 be the midpoints of the correspondent hypotenuses. Prove that
A0C0 = B0D0.

Solution. Let the circle meet AB, BC, CD, DA at points K1, K2, L1, L2, M1, M2,
N1, N2. Then K1K2M2M1 is an isosceles trapezoid, i.e. AK1 −DM1 = BK2 − CM2, or
AK1 + CM2 = BK2 +DM1. Hence the projections of segments A0C0 and B0D0 to AB,
equal to AB − (AK1 + CM2)/2 and AB − (BK2 +DM1)/2 respectively, are congruent.
Similarly their projections to BC are congruent, therefore the lengths of these segments
are equal.

3. (M.Plotnikov) (8) Let I be the incenter of triangle ABC; HB, HC the orthocenters of
triangles ACI and ABI respectively; K the touching point of the incircle with the side
BC. Prove that HB, HC and K are collinear.

Solution. Since BHB and CHC are perpendicular to AI, the quadrilateral BHBCHC is a
trapezoid and its diagonals divide each other as BHB : CHC . Since the projections M , N
of HB, HC to AB and AC respectively coincide with the projections of I to these lines, we
obtain that BM = BK and CN = CK. Also since ∠HBBM = ∠HCCN = 90◦ − ∠A/2,
the right-angled triangles HBBM and HCCN are similar. Therefore BHB : CHC = BK :
CK, and the diagonals of the trapezoid meet at K (fig. 3).
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4. (A.Zaslavsky) (8) A triangle ABC is given. Let C ′ be the vertex of an isosceles triangle
ABC ′ with ∠C ′ = 120◦ constructed on the other side of AB than C, and B′ be the vertex
of an equilateral triangle ACB′ constructed on the same side of AC as ABC. Let K be
the midpoint of BB′. Find the angles of triangle KCC ′.

Answer. 90◦, 30◦, 60◦.

Solution. Let C ′′ be a vertex of parallelogram B′C ′BC ′′. Then B′C ′′ = BC ′ = AC ′,
B′C = AC and ∠CB′C ′′ = ∠CAC ′ because the angle between C ′′B′ and AC ′ is equal
to ∠B′CA = 60◦. Therefore the triangles C ′′B′C and C ′AC are congruent, and the
angle between their corresponding sidelines C ′′C and C ′C is equal to 60◦ (fig. 4). Thus
the triangle CC ′C ′′ is regular, and since K is the midpoint of C ′C ′′, we obtain that
CK ⊥ C ′K and ∠C ′CK = 30◦.
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This reasoning can be also formulated in the following way. Consider the rotations around
C ′ by 120◦ and around C by 60◦. Their composition maps B to B′, hence it is the reflection
about K. Since it maps C to C ′′, we obtain the indicated answer.

5. (B.Frenkin) A segment AB is fixed on the plane. Consider all acute-angled triangles with
side AB. Find the locus of

a) (8) the vertices of their greatest angles;

b) (8–9) their incenters.

Answer. a) The points A, B and the set of points lying inside or on the boundary of
the intersection of two discs centered at A and B with radii AB, but outside the disc
with diameter AB. b) The set of points lying inside the square AKBL, but outside the
intersection of two discs centered at K and L with radii KA.

Solution. a) If the vertex of the greatest angle does not coincide with A or B then AB
is the greatest side of triangle ABC, i.e. CA ≤ AB and CB ≤ AB. On the other hand,
since angle C is acute, we obtain that C lies outside the circle with diameter AB.

b) Let I be the incenter of ABC. Since angles A and B are acute, we have ∠IAB < 45◦

and ∠IBA < 45◦, i.e. I lies inside the square AKBL. On the other hand, since angle
C is acute, we obtain that ∠AIB < 135◦ and I lies outside the intersection of the discs
centered at K, L with radii KA.

6. (N.Moskvitin) (8–9) Let ABCD be a convex quadrilateral with AC = BD = AD; E
and F the midpoints of AB and CD respectively; O the common point of the diagonals.
Prove that EF passes through the touching points of the incircle of triangle AOD with
AO and OD.

Solution. Let X, Y , Z be the touching points of the incircle with AO, OD, AD respectively.
Then DY = DZ and therefore BY = AZ = AX. Furthermore OX = OY . Applying the
Menelaus theorem to the triangle AOB and the line XY , we obtain that this line passes
through E. Similarly it passes through F (fig. 6).
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7. (B.Frenkin) (8–9) The circumcenter of a triangle lies on its incircle. Prove that the ratio
of its greatest and smallest sides is less than two.

First solution. Since the circumcenter belongs to the given triangle ABC, this triangle
is not obtuse-angled. If it is right-angled then the circumcenter O is the midpoint of its
hypothenuse and coincides with the touching point of the incircle. Therefore the triangle
is isosceles and right-angled and the assertion of the problem is valid. Suppose that the
triangle is acute-angled and O lies on one of three arcs between the touching points. Let
this arc is faced to the vertex A. Construct the perpendiculars from O to AB and AC.
The foot of each of them (the midpoint of the corresponding side) lies between A and the
touching point of the incircle ω with the side. Therefore, AB > BC and AC > BC.

Now we have to prove that the ratio of each of sides AB,AC to BC is less than 2. For
example let D be the midpoint of AB. Let us prove that AD < BC. Let K and L be
the touching points of ω with AB and BC. Then BK = BL, and we have to prove that
DK < CL. But the perpendicular from D to AB passes through the point O on ω, hence
DK is not greater than its radius. On the other hand CL is greater than the radius,
because the perpendicular from C to BC does not intersect ω (the angle between BC
and the tangent CA is acute). Q.e.d.

Second solution. Use the Euler formula: OI2 = R2 − 2Rr, where I is the incenter,
R, r are the radii of the circumcircle and the incircle. Since OI = r we obtain that
r/R =

√
2 − 1. Each side of the triangle is a chord of the circumcircle tangent to the

incircle. The greatest of these chords is equal to 2R, and the shortest one touching the
incircle at the point opposite to O is 2

√
R2 − 4r2 > R.

8. (Ye.Bakayev) (8–9) Let AD be the base of trapezoid ABCD. It is known that the
circumcenter of triangle ABC lies on BD. Prove that the circumcenter of triangle ABD
lies on AC.

Solution. Let the perpendicular bisector to AB meet BD and AC at points K and
L respectively. Then by the assumption ∠BLK = ∠ACB = ∠CAD. Hence ∠CKL =
∠BDA which yields the required assertion (fig. 8).
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9. (A.Zaslavsky) (8–9) Let C0 be the midpoint of hypotenuse AB of triangle ABC; AA1,
BB1 the bisectors of this triangle; I its incenter. Prove that the lines C0I and A1B1 meet
on the altitude from C.

Solution. Use the following property of an arbitrary triangle.
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Lemma. The line C0I meets the altitude CH at the point lying at the distance r from
C.

In fact, let C ′, C ′′ be the touching points of side AB with the incircle and the excircle
respectively, and C2 the point of the incircle opposite to C ′. Point C is the homothety
center of the incircle and the excircle, and C2 and C ′′ are the corresponding points of
these circles, therefore C, C2, C ′′ are collinear. Furthermore C ′C0 = C ′′C0, i.e. C0I is the
medial line of triangle C ′C ′′C2, and C0I ∥ CC2. Hence the lines CC2, C2I, C0I and CH
are the sidelines of a parallelogram, and we obtain the assertion of the lemma (fig. 9.1).
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Fig. 9.1

Return to the problem. Denote the common point of C0I and CH by H ′ (fig. 9.2).
Since CH ′ = r, the distances from H ′ to CA, BC and AB are db = r cos∠HCB =
r cos∠BAC = r · AC/AB, da = r · BC/AB and dc = CH − r respectively. Since (AB +
BC+CA)r = AB ·CH = 2SABC , we obtain that dc = da+db. It is clear that the distances
from A1, B1 to BC, CA andAB also have the similar property. By the Thales theorem
all such points are collinear.
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10. (I.I.Bogdanov) (8–10) Points K and L on the sides AB and BC of parallelogram ABCD
are such that ∠AKD = ∠CLD. Prove that the circumcenter of triangle BKL is equidistant
from A and C.

Solution. The triangles AKD and CLD are similar by two angles, therefore AK : CL =
AD : CD. Hence, when K moves along AB with constant velocity, L also moves along BC
uniformly, and therefore the circumcenter of BKL moves along some line. If K, L are the
projections of D to AB and BC respectively, the circumcenter of BKL coincides with the
center of the parallelogram, and when K and L coincide with A and C respectively, the
circumcenter lies on the perpendicular bisector to AC. Thus this perpendicular bisector
is the locus of circumcenters.

11. (A.Tolesnikov) (8–11) A finite number of points is marked on the plane. Each three of
them are not collinear. A circle is circumscribed around each triangle with marked vertices.
Is it possible that all centers of these circles are also marked?

Answer. No.

Solution. Consider the circle having the minimal radius. Let it be the circumcircle of
triangle ABC, and O be its center. If ABC is not a regular triangle, then some of its
angles, for example C, is less than 60◦. But in this case 60◦ < ∠AOB < 120◦, i.e.
sin∠AOB > sin∠ACB, and by the sinus theorem the circumradius of AOB is less than
the radius of circle ABC, which contradicts to the definition of this circle. If ABC is
regular then the centers A′, B′, C ′ of circles BOC, COA, AOB are also marked. But for
example the triangle AOB′ is regular, and its circumradius is less than the radius of circle
ABC.

12. (D.Shvetsov) (9–10) Let AA1, CC1 be the altitudes of triangle ABC, B0 the common
point of the altitude from B and the circumcircle of ABC; and Q the common point of
the circumcircles of ABC and A1C1B0, distinct from B0. Prove that BQ is the symmedian
of ABC.

Solution. Since A, C, A1, C1 are concyclic we obtain that the lines AC, A1C1 and B0Q
concur at the radical center N of circles ACA1C1, ABC and A1C1B0. Let BQ meet
AC and A1C1 at points P and M respectively (fig. 12). Projecting the circumcircle of
triangle ABC from Q to AC, and projecting this line from B to A1C1 we obtain te
equality of cross-ratios (A1C1MN) = (CAPN) = (CABB0) =

BC
BA

: B0C
B0A

. Since B0 is the
reflection of the orthocenter H of triangle ABC about AC, the second fraction is equal to
HC/HA = CA1/AC1. Now applying the Menelaus theorem to the triangle A1BC1 and
the line ACN we obtain that A1C1MN = C1N/A1N , i.e. A1M = C1M . Therefore BM
is the median of triangle A1BC1 and the symmedian of ABC.
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13. (A.Zaslavsky) (9–11) Two circles pass through points A and B. A third circle touches
both these circles and meets AB at points C and D. Prove that the tangents to this circle
at these points are parallel to the common tangents of two given circles.

Solution. Let the third circle touch two given circles at points X, Y , and their common
tangent touch them at U , V (points X and U lie on the same circle). Since X is the
homothety center of touching circles, the line XU meets the third circle at point P such
that the tangent at this point is parallel to UV . Similarly Y V passes through P . Also
X, Y , U , V are collinear, therefore PX · PU = PY · PV . Hence P lies on AB and thus
coincides with one of points C, D (fig. 13). The proof for the second point is similar.
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14. (N.Moskvitin) (9–11) Let points B and C lie on the circle with diameter AD and center
O on the same side of AD. The circumcircles of triangles ABO and CDO meet BC at
points F and E respectively. Prove that R2 = AF · DE, where R is the radius of the
given circle.
Solution. Since ABFO is cyclic and AO = OB, we have (fig.14)
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Similarly, DE/OD = sin∠BCD/ sin∠CDA. Since ABCD is cyclic, the product of these
ratios is equal to 1.

15. (K.Aleksiev) (9–11) Let ABC be an acute-angled triangle with incircle ω and incenter
I. Let ω touch AB, BC and CA at points D, E, F respectively. The circles ω1 and ω2

centered at J1 and J2 respectively are inscribed into ADIF and BDIE. Let J1J2 intersect
AB at point M . Prove that CD is perpendicular to IM .

Solution. Since DJ1, DJ2 are the bisectors of triangles DIA, DIB respectively, we have
AJ1/J1I = AD/ID, IJ2/J2B = CI/CB. By the Menelaus theorem we obtain that the
quadruple A, B, C, M is harmonic, i.e. M lies on FE (fig.15). Since C and D are the
poles of lines EF and AB wrt the incircle we obtain that M is the pole of CD, therefore
CD ⊥ IM .
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16. (P.Ryabov) (9–11) The tangents to the circumcircle of triangle ABC at A and B meet
at point D. The circle passing through the projections of D to BC, CA, AB, meet AB
for the second time at point C ′. Points A′, B′ are defined similarly. Prove that AA′, BB′,
CC ′ concur.

Solution. The pedal circle of point D coincides with the pedal circle of isogonally
conjugated point D′ which is the vertex of parallelogram ACBD′. Hence C ′ is the
projection of D′ to AB, i.e. the reflection of the foot of the altitude from C about the
midpoint of AB. Similarly A′, B′ are the reflections of the feet of the altitudes from A and
B about the midpoints of the corresponding sides. Therefore AA′, BB′ and CC ′ concur
at the point isotomically conjugated to the orthocenter of the triangle.

17. (A.Trigub) (9–11) Using a compass and a ruler, construct a point K inside an acute-angled
triangle ABC so that ∠KBA = 2∠KAB and ∠KBC = 2∠KCB.

Solution. Let the circle centered at K and passing through B meet AB and BC at
points P and Q respectively, and let T be the midpoint of arc ABC of the circumcircle.
Then ∠KPB = ∠KBP = 2∠KAP , therefore ∠KAP = ∠PKA and AP = PK = KB.
Similarly CQ = QK = KB. Since AP = CQ, AT = CT and ∠PAT = ∠QCT , the
triangles TAP and TCQ are congruent i.e. ∠TPB = ∠TQB and T lies on the circle BPQ.
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Hence the center K of this circle lies on the perpendicular bisector to BT . Furthermore
by the assumption ∠AKC = 3∠B/2, i.e. K lies on the corresponding arc (fig.17).

A

B

C

P Q

K

T

Fig. 17

Now let us prove that the constructed point K is in fact the required one. Denote again
the common points of the sidelines with the circle centered at K and passing through
B by P and Q. Since this circle passes through T , we obtain that AP = CQ. If AP >
PK = KB then ∠PKA > ∠PAK, ∠KPB = ∠KBP > 2∠BAK, ∠KBC > 2∠KCB
and ∠AKC < 3∠B/2 which contradicts to the construction of K. Similarly if AP < PK
we have ∠AKC > 3∠B/2.

18. (A.Trigub) (9–11) Let L be the common point of the symmedians of triangle ABC,
and BH be its altitude. It is known that ∠ALH = 180◦ − 2∠A. Prove that ∠CLH =
180◦ − 2∠C.

Solution. Let AA1, CC1 be the altitudes of the triangle. Then the symmedians AL, CL
are the medians of triangles AC1H, CA1H, i.e. they pass through the midpoints M , N
of segments HC1, HA1 respectively. But ∠MNH = ∠C1A1H = 180◦ − 2∠A, therefore
∠ALH = 180◦ − 2∠A if and only if HLMN is cyclic. Similarly this is equivalent to the
condition ∠CLH = 180◦ − 2∠C.

19. (D.Prokopenko) (10–11) Let cevians AA′, BB′ and CC ′ of triangle ABC concur at point
P . The circumcircle of triangle PA′B′ meets AC and BC at points M and N respectively,
and the circumcircles of triangles PC ′B′ and PA′C ′ meet AC and BC for the second time
respectively at points K and L. The line c passes through the midpoints of segments MN
and KL. The lines a and b are defined similarly. Prove that a, b and c concur.

Solution. By the assumption CM ·CB′ = CN ·CA′ and CK ·CB′ = CP ·CC ′ = CL·CA′.
Hence KL ∥ MN and c passes through C. Since MN and A′B′ are antiparallel, this line

10



is the symmedian of triangle CA′B′ and so it divides C into two angles with the ratio of
sinuses equal to CB′ : CA′. The similar relations for two remaining angles and the Ceva
theorem yield the required assertion.

20. (V.Luchkin, M.Fadin) (10–11) Given a right-angled triangle ABC and two perpendicular
lines x and y passing through the vertex A of its right angle. For an arbitrary point X
on x define yB and yC as the reflections of y about XB and XC respectively. Let Y be
the common point of yb and yc. Find the locus of Y (when yb and yc do not coincide).

Solution. Consider the point X ′ isogonally conjugated to X and its reflections U , V , W
about AB, AC, BC respectively. Perpendicularity of x and y implies that U and V lie
on y. Furthermore XB, XC are the perpendicular bisectors to UW , VW respectively.
Therefore W lies on yb, yc, i.e. it coincides with Y (fig.20). Thus Y lies on the reflection of
the isogonal image of x about BC. The required locus is this line without the points such
that yb and yc coincide, i.e. the common point of this line with BC and the reflection of
A about BC.
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Fig. 20

21. (N.Beluhov) (10–11) A convex hexagon is circumscribed about a circle of radius 1.
Consider the three segments joining the midpoints of its opposite sides. Find the greatest
real number r such that the length of at least one segment is at least r.

Solution. Let A1A2 . . . A6 be the hexagon in question, circumscribed about a circle ω
with center I, and let Mi be the midpoint of AiAi+1 (indices run modulo 6, so that, say,
A7 ≡ A1). If A1A2A3 approaches an equilateral triangle and A4, A5, and A6 all approach
the midpoint of A1A3 then the lengths of M1M4, M2M5, and M3M6 all approach

√
3.

We will show that r =
√
3 is indeed the answer to the problem. First we verify that I lies

inside M1M2 . . .M6. Suppose for example that it lies inside the triangle M1A1M6. But then
ω is contained inside A2A1A6 and cannot touch all sides of A1A2 . . . A6, a contradiction.
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Let ∠(ABCD) denote the angle such that rotation by it counterclockwise about A makes
−→
AB codirectional with

−−→
CD.

Since all Mi lie outside ω, we have IMi ≥ 1. Therefore, if 120◦ ≤ ∠(IMiIMi+3) ≤ 240◦

for some i then MiMi+3 ≥
√
3 and we are done.

Suppose now that this does not happen for any i. Let j be such that ∠(IMjIMj+3) ≤ 120◦

and ∠(IMj+3IMj) ≥ 240◦. Then there is some k, j ≤ k ≤ j+2, such that ∠(IMkIMk+3) ≤
120◦ and ∠(IMk+1IMk+4) ≥ 240◦. Without loss of generality, take k = 4. Then 120◦ ≤
∠IM1IM2 ≤ 180◦ and consequently M1M2 ≥

√
3.

Consider the convex quadrilateral M1M2M4M5. If angle M1 is right or obtuse then
M2M5 > M1M2 ≥

√
3 and we are done. If angle M2 is right or obtuse then M1M4 >

M1M2 ≥
√
3 and we are done. It remains to consider the case when angles M1 and M2

are both acute.

In this case however 90◦ < ∠(M1M2M4M5) < 270◦. Since
−−−−→
M3M6 = −

−−−−→
M1M2 +

−−−−→
M4M5

(because
−−−−→
M3M6 =

−−−−→
M3M4 +

−−−−→
M4M5 +

−−−−→
M5M6 and

−−−−→
M1M2 +

−−−−→
M3M4 +

−−−−→
M5M6 = 1

2
(
−−−→
A1A3 +−−−→

A3A5 +
−−−→
A5A1) = 0), we have M3M6 > M1M2 ≥

√
3, and the proof is complete.

22. (M. Panov) (10–11) Let P be an arbitrary point on the diagonal AC of cyclic quadrilateral
ABCD, and PK, PL, PM , PN , PO be the perpendiculars from P to AB, BC, CD,
DA, BD respectively. Prove that the distance from P to KN is equal to the distance
from O to ML.

Solution. When P moves uniformly along AC, the lines KN and ML are translated
uniformly and the point O moves uniformly as well. Thus d(P,KN) − d(O,ML) is a
linear function of the position of P . When P = A, this function equals 0 by the Simson
theorem, and when P is the common point of AC and BD, it equals 0 because KLMN is
circumscribed about a circle centered at P = O (∠NKP = ∠DAC = ∠DBC = ∠PKL
because AKPN and BKPL are cyclic).

23. (I.Frolov) (10–11) Let a line m touch the incircle of triangle ABC. The lines passing
through the incenter I and perpendicular to AI, BI, CI meet m at points A′, B′, C ′

respectively. Prove that AA′, BB′ and CC ′ concur.

Solution. The polar transformation wrt the incircle maps BC, CA, AB, m to their
touching points A1, B1, C1 M with the incircle. Since IA′ is the polar of the infinite point
of perpendicular line IA, its common point with m is the pole of the line passing through
M and parallel to IA. Since IA ⊥ B1C1, the line AA′ is the polar of the projection of
M to B1C1. Similarly the lines BB′ and CC ′ are the polars of projections of M to A1C1

and A1B1 respectively. By the Simson theorem these projections are collinear, hence their
polars concur.

24. (I.I.Bogdanov) (11) Two tetrahedrons are given. Each two faces of the same tetrahedron
are not similar, but each face of the first tetrahedron is similar to some face of the second
one. Does this yield that these tetrahedrons are similar?

Answer. No.

Solution. Let t be some number close to 1. Then there exist two tetrahedrons such
that their bases are regular triangles with side equal to 1, the lateral edges of the first
tetrahedron are equal to t, t2, t3, and the lateral edges of the second one are equal to 1/t,
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1/t2, 1/t3. It is clear that the assumption is valid for these tetrahedrons but they are not
similar.
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