
XIV Geometrical Olympiad in honour of I.F.Sharygin
Final round. Solutions. First day. 8 grade

1. (M.Volchkevich) The incircle of right-angled triangle ABC (∠C = 90◦)
touches BC at point K. Prove that the chord of the incicle cutting by the
line AK is twice as large than the distance from C to this line.

Solution. Let I be the incenter of ABC, and P , Q be the projections of I,
C respectively to AK (fig.8.1). Since ∠IKC = 90◦, ∠ICK = 45◦, we obtain
that IKC is an isosceles triangle, i.e. IK = KC. Also ∠IKP = ∠KCQ
because the corresponding sides of these angles are perpendicular. Therefore
triangles IKP and KCQ are congruent, i.e. KP = CQ. Since P is the
midpoint of the chord which is cut by AK, we obtain the required assertion.
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Fig. 8.1

2. (N.Moskvitin) A rectangle ABCD and its circumcircle are given. Let E be
an arbitrary point lying on the minor arc BC. The tangent to the circle at
B meets CE at point G. The segments AE and BD meet at point K. Prove
that GK and AD are perpendicular.

Solution. Since ∠DBG = ∠AEC = 90◦, we obtain that BGEK is cyclic
(fig.8.2). Hence ∠BGK = ∠BEA = ∠DBC and GK ⊥ BC, which is
equivalent to the required assertion.
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3. (G.Feldman) Let ABC be a triangle with ∠A = 60◦, and AA′, BB′, CC ′ be
its bisectors. Prove that ∠B′A′C ′ ≤ 60◦.

Solution. If ABC is regular then the assertion is evident, thus we can
suppose that AC > AB. Let I be the incenter. Then ∠BIC = 120◦,
therefore AB′IC ′ is cyclic, and since AI is the bisector, we obtain that
B′I = C ′I. Let ∠ACB = 2γ, then γ < 30◦ and IA′ = r

sin∠AA′B =
r

sin(2γ+30◦) > r
sin(γ+60◦) = r

sin∠CC ′B = IC ′. Hence A′ lies outside the circle
with center I and radius IC ′ (fig.8.3), i.e. ∠B′A′C ′ < 60◦.
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4. (M.Saghafian) Find all sets of six points in the plane, no three collinear,
such that if we divide them arbitrarily into two sets of three points, then two
obtained triangles are equal.

Answer. Two regular triangles with common circumcircle.

First solution. Let D be the multiset of 15 distances between points A1, . . . , A6

(if there are n congruent segments then the multiset contains n corresponding
numbers), and let Di be the multiset of 5 distances from Ai to the remaining
points. Consider the multiset of 30 sidelengths of triangles having Ai as one of
vertices. This multiset contains four times each number from Di and one time
each number from D \ Di. By the assumption, the sidelengths of triangles
not having Ai as a vertex form the same multiset of 30 numbers, i.e. this
multiset contains three times each number from D \Di. Therefore D = 3Di

and all Di coincide.

Introduce an arbitrary Бartesian coordinate system, and let M be the point
such that each coordinate of M is the average of the corresponding coordinates
of Ai. Let X be an arbitrary point, and x,m, a1, . . . , a6 be first coordinates
of X,M,A1, . . . , A6 respectively. Then we have (x− a1)

2+ · · ·+(x− a6)
2 =

((x−m) + (m− a1))
2 + · · ·+ ((x−m) + (m− a6))

2 = 6(x−m)2 + (m−
a1)

2 + · · ·+ (m− a6)
2. Using the similar equality for the second coordinates

and Pythagorean theorem we obtain

XA2
1 + · · ·+XA2

6 = 6XM 2 +MA2
1 + · · ·+MA2

6

(this equality is a partial case of the Leibnitz theorem). Substituting A1, . . . , A6

for X we obtain that MA1 = · · · = MA6, i.e. all given points are concyclic.
Suppose that they form a cyclic hexagon A1 . . . A6. Let A1A2 be its minor
side. Since all multisets Di are equal, we obtain that A1A2 = A3A4 = A5A6.
Similarly A2A3 = A4A5 = A6A1. It is easy to see that these conditions are
sufficient.

Second solution. Let A1, A2,. . . , A6 be the given points. Here triangle,
segment and length mean a triangle with vertices Ai, a segment with endpoints
Ai and a length of such segment respectively. Let us prove several lemmas.

1) For each length x one of the following assertions is true:

(A) there exists a regular triangle with sidelength x;

(B) there exist three segments with sidelength x having six different
endpoints.



In fact, let A1A2 = A3A4 = x. Since △A1A2A4 = △A3A5A6, there is a
side with length x in the △A3A5A6. If this is A5A6, we obtain (B), else
we have two adjacent segments with length x. Let (after renumeration)
A1A2 = A2A3 = x and A4A5 = A5A6 = x. Since △A2A3A5 = △A1A4A6,
there is a side with length x in the △A1A4A6. If this is A4A6, we have (A),
else we have a broken line with five links of length x. Its extreme and medial
links satisfy (B).

2) Let x be the maximal length. Then (A) is not correct, and thus (B) is
true.

In fact if △A1A2A3 is regular and x is its sidelength, then the vertices of a
congruent △A4A5A6 lie inside the corresponding Reuleaux triangle which is
impossible.

3) Two segments with maximal length x intersect.

In fact let A1A2 = x, draw two lines to A1 and A2 perpendicular to A1A2.
The remaining points lie inside the strip between this lines. Constructing the
similar strip for A3A4 = x, we obtain that A1A2 and A3A4 are the altitudes
of a rhombus, joining inner points of its sides. It is clear that such altitudes
intersect.
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4) Let segments A1A2, A3A4 and A5A6 intersect at three points (fig.8.4).
Then the perpendiculars A1B1 and A2B2 are equal as altitudes of congruent
triangles A1A3A4 and A2A5A6. Similarly the perpendiculars A1C1 and A2C2



are equal. Therefore A1P
PA2

= A1B1
A2C2

= A2B2
A1C1

=
A2Q
QA1

and A1P = QA2. This
yields that △A1PB1 = △A2QB2, i.e. ∠P = ∠Q. Similarly we obtain that
△PQR is regular, and thus A1P = QA2 = A3P = RA4 = A6R = QA5. It
is easy to see that the obtained configuration satisfies the condition.

If three maximal segments concur then we similarly obtain that the angles
between them are equal 60◦ and their common point bisects them.



XIV Geometrical Olympiad in honour of I.F.Sharygin
Final round. Solutions. Second day. 8 grade

5. (S.Sevastianov) The side AB of a square ABCD is a base of an isosceles
triangle ABE (AE = BE) lying outside the square. Let M be the midpoint
of AE, O be the common point of AC and BD, and K be the common point
of ED and OM . Prove that EK = KO.

Solution. Since OM is a medial line of triangle ACE, OM ∥ EC, therefore
∠KOE = ∠OEC (fig.8.5). But it is clear that EO bisects angle CED. Thus
∠EOK = ∠OEK and OKE is an isosceles triangle.
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6. (D.Shnol) The corresponding angles of quadrilaterals ABCD and A1B1C1D1

are equal. Also AB = A1B1, AC = A1C1, BD = B1D1. Are the quadrilaterals
ABCD and A1B1C1D1 congruent?

Answer. No.

Solution. Let A = A1, B = B1, AXB be an isosceles triangle, AA′, BB′

be its altitudes. Let C, C1 lie on BX and D, D1 lie on AX in such a way
that CA′ = C1A

′ = DB′ = D1B
′. Then AC = AC1 = BD = BD1 and

two isosceles trapezoids ABCD, A1B1C1D1 satisfy all conditions but are not
congruent (fig.8.6).
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7. (F.Nilov) Let ω1, ω2 be two circles centered at O1, O2 and lying each outside
the other. Points C1, C2 lie on these circles in the same semiplane with
respect to O1O2. The ray O1C1 meets ω2 at points A2, B2, and the ray O2C2

meets ω1 at points A1, B1. Prove that ∠A1O1B1 = ∠A2O2B2 if and only if
C1C2 ∥ O1O2.

First solution. Let R1, R2 be the radii of the circles, M1, M2 be the
midpoints of A1B1, A2B2 respectively, and H1, H2 be the projections of C1,
C2 to O1O2. The equality ∠A1O1B1 = ∠A2O2B2 is equivalent to O1M1/R1 =
O2M2/R2. Since the triangle O1O2M2 is similar to O1C1H1, we have O2M2/R2 =
(C1H1·O1O2)/(R1R2) (fig.8.7). Similarly O1M1/R1 = (C2H2·O1O2)/(R1R2).
Therefore the equality O1M1/R1 = O2M2/R2 is equivalent to C1H1 = C2H2,
which is equivalent to C1C2 ∥ O1O2.
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Second solution. The equality ∠A1O1B1 = ∠A2O2B2 is equivalent to
∠O1A1O2 = ∠O1A2O2, i.e. O1A1A2O2 is cyclic. Let us prove that this is
equivalent to C1C2 ∥ O1O2.

If O1A1A2O2 is cyclic then ∠A1O1C1 = ∠A2O2C2, ∠O1C1A1 = ∠O2C2A2

and C1A1A2C2 is cyclic. Therefore O1O2 and C1C2 are antiparallel to A1A2

with respect to O1A2 and O2A1. Hence these lines are parallel.

If C1C2 ∥ O1O2 then consider a common point X of ray O1C1 and circle
A1O1O2. Since A1C1C2X is cyclic we have ∠A1O1X = ∠XO2A1 and ∠O1C1A1 =
∠O2C2X. Thus ∠O2XC2 = ∠O1A1C1 = ∠O1C1A1 = ∠O2C2X, i.e. OX =
O2C2 and X coincides with A2.

8. (I.Kukharchuk) Let I be the incenter of triangle, and D be an arbitrary point
of side BC. The perpendicular bisector to AD meets BI and CI at points
F and E respectively. Find the locus of orthocenters of triangles EIF .

Answer. The segment of line BC between its common points with two lines
passing through I and parallel to AB, AC, probably without one or two
points.

Solution. Let G, H be the orthocenters of triangles DEF , IEF respectively.
Since the triangles DEF and AEF are symmetric with respect to EF , we
obtain that G is the reflection of the orthocenter of AEF and thus G lies on
the circumcircle of this triangle.

The common point E of the perpendicular bisector to AD and the bisectrix
of angle C lies on the circumcircle of ACD. Hence ∠AEF = ∠AED/2 =
90◦−∠C/2 = ∠A/2+∠B/2 = ∠AIF (because AIF is an external angle of
triangle AIB), i.e. I lies on the circle AEF . Then, since AEDC and AEIG
are cyclic, we obtain that IG ∥ CD.

Since ∠EHF = 180◦ − ∠EIF = ∠EAF = ∠EDF , the points E, F , D,
H are concyclic, therefore IH = DG. Also it is clear that DG ∥ IH. Thus
IGDH is a parallelogram and H lies on BC (fig.8.8). If for example D
coincides with C then DG coincides with AC and IH ∥ AC. If BC is the
smallest side of the triangle then all points of the obtained segment lie on
the required locus. If for example BC ≥ AB then the reflection of A about
the bisector of angle B lies on the segment BC. When D coincides with this
point the perpendicular bisector to AD coincides with BI and the point F
is not defined. Hence the corresponding point H has to be eliminated from
the locus.
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Note. We can prove that H lies on BC in another way. The projections of
A to the bisectors of angles B and C lie on the medial line of the triangle.
The midpoint of AD which is the projection of A to EF also lies on this
medial line. Hence the medial line is the Simson line of A with respect to
triangle IEF , and the homothetic line BC passes through the orthocenter
of this triangle.



XIV Geometrical Olympiad in honour of I.F.Sharygin
Final round. Solutions. First day. 9 grade

1. (M.Etesamifard) Let M be the midpoint of AB in a right-angled triangle
ABC with ∠C = 90◦. A circle passing through C and M intersects the
segments BC and AC at P and Q, respectively. Let c1, c2 be circles with
centers P , Q and radii BP , CQ, respectively. Prove that c1, c2 and the
circumcircle of ABC are concurrent.
Solution. Let N be the second common point of circle MPQ with AB. Then
∠QNA = ∠QPM = ∠ACM = ∠CAM (fig.9.1). Therefore QA = QN and
N lies on c2. Similarly N lies on c1. Now if D is the second common point of
c1 and c2 then ∠ADB = ∠ADN +∠NDB = (∠AQN +∠NPB)/2 = 90◦,
i.e. D lies on the circumcircle of ABC.
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2. (G.Naumenko) A triangle ABC is given. A circle γ centered at A meets
segments AB and AC. The common chord of γ and the circumcircle of
ABC meets AB and AC at points X and Y respectively. The segments
CX and BY meet γ at points S and T respectively. The circumcircles of
triangles ACT and BAS meet at points A and P . Prove that CX, BY and
AP concur.
Solution. Let U be the second common point of BY and γ. Since TU , AC
and the common chord of circles ABC and γ meet at Y , we have AY ·CY =



TY · UY , i.e. A, U , C, T are concyclic (fig.9.2). Similarly A, B, S and the
second common point of CX with γ are concyclic. Therefore CX, BY and
AP concur as the radical axes of circles γ, ACT and BAS.
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3. (N.Beluhov) The vertices of triangle DEF lie on the different sides of triangle
ABC. The tangents from the incenter of DEF to the excircles of ABC are
equal. Prove that 4SDEF ≥ SABC .
Solution. Let A0, B0, C0 be the midpoints of BC, CA, AB, and U , V be
the tangency points of AB with the excircles touching the sides AC and BC

respectively. Since AV = BU = p (semiperimeter of ABC), the tangents
from C0 to these two excircles are equal. Furthemore the centers of these
circles lie on the external bisector of angle C perpendicular to the bisector
of angle A0C0B0, hence this bisector is the radical axis of two excircles.
Similarly the bisectors of angles C0A0B0 and B0A0C0 are the radical axes
of two remaining pairs of excircles, thus the incenters of triangles DEF
and A0B0C0 coincide. Suppose that D lies on the segment CA0. Now if the
inradius r′ of DEF is greater than the inradius r of A0B0C0 then F lies on
the segment BC0, and thus E lies on AB0. Furthermore if r′ < r then E
lies on AB0, and thus F lies on BC0. Hence the distance from F to ED is
not less than the distance from C0 to this line, i.e. SDEF ≥ SC0DE. Similarly
SC0DE ≥ SB0C0D = SA0B0C0

= SABC/4.



4. (A.Mudgal, India) Let BC be a fixed chord of a given circle ω. Let A be
a variable point on the major arc BC of ω. Let H be the orthocenter of
triangle ABC. Points D and E lying on lines AB and AC respectively are
such that H is the midpoint of segment XY . Let OA be the circumcenter
of triangle AXY . Prove that all points OA lie on a fixed circle.

Solution Denote by α the constant angle 90◦ − ∠BAC. Let P , Q be the
midpoints of AD, AE, and R, S be points on BC such that PR ⊥ AB,
SQ ⊥ AC (fig. 9.4). Let us prove that R, S do not depend from A.
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Note that HQ ∥ AB, i.e. ∠CHQ = 90◦ and ∠CQH = ∠CAB. Furthermore
H moves aloong the circle symmetric to ω with respect to BC. Since Q is
the image of H in the spiral similarity with center C, rotation angle α and
coefficient 1/ cosα, we obtain that Q also moves along some circle which we
denote by ωC .

Let O be the center of ω. Since ∠OCB = α, the center of ωC lies on BC.
Since ∠CQS = 90◦, we obtain that S is opposite to C on ωC . Therefore S
does not depend from A. The proof for R is similar.

Since OA is the common point of PR and QS, and ∠ROAS = 90◦ + α, we
obtain that OA moves along the arc of the circle passing through R and S.



XIV Geometrical Olympiad in honour of I.F.Sharygin
Final round. Solutions. Second day. 9 grade

5. (D.Prokopenko) Let ABCD be a cyclic quadrilateral, BL and CN be the
bisectors of triangles ABD and ACD respectively. The circumcircles of
triangles ABL and CDN meet at point P and Q. Prove that the line PQ
passes through the midpoint of the arc AD not containing B.

Solution. Let M be the midpoint of arc AD. Then BL and CN pass
through M . Also since ⌣ AM =⌣ DM , we have ∠ALB = (⌣ AB+ ⌣
DM)/2 =⌣ BAM/2 = ∠BCM , and thus BCNL is cyclic (fig.9.5). Therefore
ML ·MB = MN ·MC, and M lies on the radical axis PQ of circles ABL

and CDN .
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6. (F.Ivlev) Let ABCD be a circumscribed quadrilateral. Prove that the common
point of its diagonals, the incenter of triangle ABC and the center of excircle
of triangle CDA touching the side AC are collinear.

First solution. Applying the three homothety centers to the incircle of
ABCD, the incircle ω of triangle ABC and the excircle Ω of triangle ACD,
we obtain that the common external tangents to ω and Ω meet on BD, and
since AC is one of these two tangents, they meet at the common point of
diagonals of ABCD. Thus this point lies on the centerline of ω and Ω.



Second solution. Let L be the common point of the diagonals of ABCD,
I be its incenter, IB be the incenter of triangle ABC, and ID be the excenter
of triangle ADC. Clearly IB lies on the segment BI, and the ratio BIB : BI

is equal to the ratio rB : r of the inradii of ABC and ABCD respectively.
Since SABCD = (AB+BC+CD+DA)r/2, SABC = (AB+BC+CA)rB/2
and SABC : SABCD = BL : BD, we obtain that

IBI

IBB
=

DL(AB +BC + CA)−BL(AD + CD − AC)

BL(AB +BC + CD +DA)
.

Similarly for the point ID lying on the ray DI we have

IDI

IDD
=

DL(AB +BC + AB)−BL(AD + CD − AC)

DL(AB +BC + CD +DA)
.

Applying Menelaos theorem to the triangle IBD, we obtain the required
assertion (fig.9.6).
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7. (A.Kulikova) Let B1, C1 be the midpoints of sides AC, AB of a triangle
ABC. The rays CC1, BB1 meet the tangents to the circumcircle at B and
C at K and L respectively. Prove that ∠BAK = ∠CAL.

Solution. Use the isogonals theorem.

Let ℓ be a line passing through a point O. Let points A, A′, B, B′ be given
and X = AB ∩A′B′, X ′ = AB′∩A′B. Let OA and OA′ be symmetric with



respect to ℓ, OB and OB′ be also symmetric with respect to ℓ. Then OX
and OX ′ are symmetric with respect to ℓ,

Return to the problem. Let M be the centroid of ABC,and P be the common
point of two tangents. Since AP is a symedian, the lines AP and AM are
the isogonals with respect to angle BAC (fig.9.7). By the isogonals theorem,
AK and AL are also isogonals.
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8. (N.Beluhov) Consider a fixed regular n-gon of unit side. As a second regular
n-gon of unit side rolls around the first one, one of its vertices successively
pinpoints the vertices of a closed broken line κ as in the figure.

Let A be the area of a regular n-gon of unit side and let B be the area of a
regular n-gon of unit circumradius. Prove that the area enclosed by κ equals
6A− 2B.

Solution. Dissect the area enclosed by κ into triangles as in Fig.9.8.1.



Fig.9.8.1

The triangles whose bases are sides 2, . . . , n−1 of a fixed regular n-gon come
together to form a regular n-gon of unit side as in Figure 9.8.2.

Fig.9.8.2

Dissect two regular n-gons of unit circumradius as in Figure 9.8.2, rearrange
the resulting pieces into n− 1 similar isosceles triangles with base angle 180◦

n

as in Figure 9.8.3, and adjoin the triangles thus obtained to the remaining
triangles of Figure 9.8.1 as in Figure 9.8.4.

Fig.9.8.3



Fig.9.8.4

Dissect each one of the n − 1 quadrilaterals in Figure 4 into two similar
isosceles triangles with base angle 180◦

n as in Figure 9.8.5.

Fig.9.8.5

Lastly, dissect all 2n− 2 triangles thus obtained into four regular n-gons of
unit side by the reverse of the process in Figure 9.8.3.

Eventually we adjoined two regular n-gons of unit circumradius to the area
enclosed by κ and then dissected the resulting shape into six regular n-gons
with unit side. This completes the solution.



XIV Geometrical Olympiad in honour of I.F.Sharygin
Final round. Solutions. First day. 10 grade

1. (D.Shvetsov) The altitudes AH, CH of an acute-angled triangle ABC meet
the internal bisector of angle B an points L1, P1, and the external bisector of
this angle at points L2, P2. Prove that the orthocenters of triangles HL1P1,
HL2P2 and the vertex B are collinear.
First solution. Note that HL1P1 and HL2P2 are isosceles triangles with
angles at H equal to B and π−B respectively. Let H1, H2 be the orthocenters
of these triangles, and M1, M2 be the midpoints of L1P1, L2P2 respectively.
Then the triangles HL2P2, H1L1P1 are similar and H2, H are their orthocenters,
therefore HH1 : M2B = HH1 : HM1 = H2H : H2M2, which is equal to the
required assertion (fig.10.1).
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Second solution. Use next fact.
The orthocenters of four triangles formed by four lines in general position
are collinear (the Aubert line).
In the given case the altitudes from A, C, the internal and the external
bisectors of angle B form four four triangles, two of them are right-angled
with right angle B. Thus B is also the orthocenter of these triangle, therefore
B and the orthocenters of two remaining triangles are collinear.

2. (D.Krekov) A circle ω is inscribed into an angle with vertex C. An arbitrary
circle passes through C, touches ω externally and meets the sides of the angle
at points A and B. Prove that the perimeters of all triangles ABC are equal.



First solution. Let the length of the tangent from C to the given circle is
1. The inversion about the unit circle centered at C preserves the sides of
the angle and the given circle, and maps A, B to points A′, B′ such that
the triangle A′B′C is circumscribed around the given circle. Now we have
AC = 1/A′C, BC = 1/B′C, AB = A′B′/(A′C ·B′C). Hence the perimeter
of ABC is equal to

A′B′ + A′C +B′C

A′C ·B′C
=

2pA′B′C sin∠C
2SA′B′C

=
sin∠C
rA′B′C

.

But the inradius of A′B′C does not depend from A, B.
Second solution. Since ω is the semiexcircle of triangle ABC, the excenter
ot these triangle coincide with the midpoint of the segment between the
touching points of ω with the sidelines of the given angle, т.е this excenter
is the same for all triangles. Therefore the touching points of the excircle
with the sidelines do not depend on the triangle, hence its perimeter is also
constant.

3. (F.Nilov) A cyclic n-gon is given. The midpoints of all its sides are concyclic.
The sides of n-gon cut n arcs of this circle ling outside the n-gon. Prove that
these arcs can be colored red and blue in such a way that the sum of red arcs
is equal to the sum of blue arcs.
Solution. Let M1, M2 be the midpoints of sides A1A2, A2A3 of polygon
A1 . . . An, O be the circumcenter of this polygon, and H1, H2 be the second
common points of the sides with the circle passing through the midpoints.
Then the sum of directed arcs ⌣ M1H1+ ⌣ M2H2 =⌣ M1H2+ ⌣ M2H1 =
2(∠A2M2M1 + ∠A2M1M2) = 2(∠OM2M1 + ∠OM1M2) = 2(∠OA2M1 +
∠OA2M2) (the last equality holds because OM1A2M2 is cyclic). Summing
up such equalities we obtain that the directed sum of arcs MiHi is zero,
therefore we can color the arcs in correspondence with their directions.
Note. We can modify this argumentation as follows. The projections Mi of
the circumcenter O to the sides are concyclic. Therefore the second common
points Hi of the sides and these circles are the projections of some point
H, and the rays AiO and AiH are symmetric with respect to the bisector
of angle Ai−1AiAi+1. Now it is easy to see that the directed angle between
M1M2 and H1H2 is equal to the directed angle HA2O, and the sum of such
angles is zero.

4. (N.Beluhov) We say that a finite set S of red and green points in the plane
is orderly if there exists a triangle δ such that all points of one colour lie



strictly inside δ and all points of the other colour lie strictly outside of δ. Let
A be a finite set of red and green points in the plane, in general position. Is
it always true that if any 1000 points in A form an orderly set then A is also
orderly?

Solution. At first let us consider a slightly different problem, in which
“orderly” is replaced with “red-orderly”: there exists a triangle δ such that
all red points lie strictly inside δ and all green points lie strictly outside of δ.

Let A be a finite set of red and green points in the plane, in general position,
and let P be the convex hull of some red points in A. Let also Q be a subset of
the green points in A. How can we check if a triangle δ exists that separates
P from Q?

Without loss of generality, the sides of δ are supporting lines for P .

Let c be some fixed circle. To each supporting line l of P assign the unique
point T (l) on c such that the tangent t(T ) to c at T (l) is parallel to l and P
lies on the same side from l as c does of t(T ).

Let X be any point in Q. Let l1(X) and l2(X) be the two supporting lines
of P through X (if X lies inside P , then P cannot be separated from Q),
and let a(X) be the arc of c with endpoints T (l1(X)) and T (l2(X)).

If a separating triangle δ exists, then the three points on c assigned to its
sides nail down all arcs a(X) where X ranges over Q. The converse statement
is slightly more subtle: if there exist three points on c that nail down all arcs
a(X), and are the vertices of an acute-angled triangle, then they give us a
triangle δ that separates P from Q.

So we are looking for a system of arcs on c such that it is possible to nail
down all its large subsystems by means of three points but this is impossible
for the complete system. (It is not clear yet whether finding such a system
or showing that none exist for some sense of “large” would solve the problem,
but it should surely shed some light.)

We construct such a system as follows: we consider a large number of equal,
equally spaced arcs set up in such a way that any point nails down nearly
but not quite a third of them.

More precisely, let n be a positive integer and let T1, T2, . . . , T3n+1 be the
vertices of a regular (3n+ 1)-gon inscribed in c, with Ti+3n+1 ≡ Ti for all i.
For all i let ai be the open arc TiTi+n. Then any point on c nails down at
most n arcs, so it is impossible to nail down all arcs by means of three points.



On the other hand, remove any one arc, say T1Tn+1, and three midpoints of
Tn+1Tn+2, T2n+1T2n+2, and T3n+1T1 do the job.

This provides a counterexample for the original problem. Consider a regular
3001-gon Y1Y2 . . . Y3001 inscribed in a circle k of center O, where Yi+3001 ≡ Yi

for all i. For all i let Xi be the intersection of the tangents to k at Yi and
Yi+1000. Slide each Xi very slightly towards O so that all points are in general
position. Colour all Xi green and all Yi red, and let A be the set of all Xi

and Yi.

Since the convex hull of the Xi contains the Yi, the set A can be orderly only
if it is red-orderly. However, by the previous discussion, it is not.

Remove any Xi or any Yi. Again, by the previous discussion, A becomes
red-orderly and, therefore, orderly.

Notes. We say that a finite set S of red and green points in the plane is
line-orderly if there exists a line l such that all points of one colour lie strictly
on one side of l and all points of the other colour lie strictly on the other
side of l. Let A be a finite set of red and green points in the plane, in general
position. Then A is line-orderly if and only if every four-point subset of A is
line-orderly.

We say that a finite set S of red and green points in the plane is circle-
orderly if there exists a circle c such that all points of one colour lie strictly
inside c and all points of the other colour lie strictly outside of c. Let A be
a finite set of red and green points in the plane, in general position. Then A
is circle-orderly if and only if every five-point subset of A is circle-orderly.



XIV Geometrical Olympiad in honour of I.F.Sharygin
Final round. Solutions. Second day. 10 grade

5. (A.Polyanskii) Let w be the incircle of a triangle ABC. The line passing
through the incenter I and parallel to BC meets w at points AB an AC (AB

lies in the same semiplane with respect to AI that B). The lines BAB and
CAC meet at point A1. The points B1 and C1 are defines similarly. Prove
that AA1, BB1 and CC1 concur.

First solution. Since segments ABAC and BC are homothetic with respect
to A1, the line A1I passes through the midpoint M of BC and A1I : A1M =
2r : BC. Hence the distance from A1 to AC is equal to r(BC − hb)/(BC −
2r), where hb is the length of the altitude from B. Similarly the distance
from A1 to AB is equal to r(BC − hc)/(BC − 2r). Therefore sin∠A1AC :
sin∠A1AB = (1 − sin∠C) : (1 − sin∠B). Using the similar equalities for
B1, C1 and Ceva theorem we obtain the required assertion.

Second solution. Since ∠ABIB = ∠IBC = ∠IBA = ∠CBIB, the points
AB and CB are symmetric with respect to the bisector of angle B (fig.10.5).
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C
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Fig. 10.5

By Ceva theorem

sin∠CAA1

sin∠BAA1

sin∠ABAB

sin∠CBAB

sin∠BCAC

sin∠ACAC
= 1.

Multiplying this and two similar equalities we obtain the required assertion.



6. (M.Kungozhin) Let ω be the circumcircle of a triangle ABC, and KL be the
diameter of ω passing through the midpoint M of AB (K and C lies on the
different sides from AB). A circle passing through L и M meets segment CK

at points P and Q (Q lies on the segment KP ). Let LQ meet the circumcircle
of triangle KMQ at point R. Prove that the quadrilateral APBR is cyclic.

Solution. Note that ∠PML = ∠PQL = ∠KQR = ∠KMR. Also ∠PLM =
∠KQM = ∠KRM , therefore the triangles PLM and KRM are similar, i.e.
PM ·RM = LM ·KM = AM 2 (fig.10.6).
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Fig. 10.6

Let P ′ be the reflection of P about KL. The points A, B, P , P ′ are concyclic
as the vertices of an isosceles trapezoid. Since P ′, M , R are collinear and
P ′M ·RM = AM ·BM , we obtain that R also lies on this circle.

7. (N.Beluhov) A convex quadrilateral ABCD is circumscribed about a circle
of radius r. What is the maximum possible value of 1

AC2 +
1

BD2?

First solution. Let AC ∩ BD = O and suppose without loss of generality
that ∠AOB ≥ 90◦. Construct E so that BECD is a parallelogram (fig.10.7).
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We have

AC ·BD ≥ 2SABCD = r · PABCD = 2r · (AB + CD).

Furthermore
AB + CD = AB +BE ≥ AE

and (since ∠ECA ≥ 90◦)

AE2 ≥ AC2 + CE2 = AC2 +BD2.

Hence

AC2 ·BD2 ≥ 4r2 · (AC2 +BD2) ⇒ 1

AC2
+

1

BD2
≤ 1

4r2
.

Equality is attained just for AC · BD = 2SABCD ⇔ AC ⊥ BD and AB +
BE = AE ⇔ AB∥CD, that is, when ABCD is a rhombus.
Second solution. We begin by altering ABCD continuously so that its
incircle remains the same but its diagonals become shorter.
Let the circle ω with center I be the incircle of ABCD. Fix ω, the line l
determined by the points A and C, and the line m through B parallel to l.
Let B vary along m. What happens to the length of AC?



Suppose the tangent n to ω parallel to both l and m and separating them,
meets AB and BC at P and Q, and let a circle ω′ of center I ′ and radius r′

be the incircle of △PBQ.

When B varies, the ratio of similitude of △PBQ and △ABC remains
constant. This means that the ratio PQ : AC, the ratio r′ : r, and r′ all
remain constant too.

Furthermore, PQ equals the common external tangent of ω′ and ω. Since
r′ and r are constant, this common external tangent is shortest when II ′ is
shortest, i.e., when BI ⊥ l. Since PQ : AC is constant, AC is also shortest
in this case.

Slide B along m until it reaches a position B1 with IB1 ⊥ l, then slide it
along IB1 towards I until it reaches a position B2 such that the length of
A2C2 equals the original length of AC. Do the same with D. Then A2B2C2D2

is circumscribed about ø, symmetric about B2D2, and satisfies A2C2 = AC
and B2D2 ≤ BD.

Repeat this procedure with A2 and C2: the result is a rhombus A3B3C3D3

circumscribed about ω which satisfies A3C3 ≤ AC and B3D3 ≤ BD. For a
rhombus, though, we have

1

A3C2
3

+
1

B3D2
3

=
1

4r2

and if A3B3C3D3 ̸= ABCD then at least one of inequalities A3C3 ≤ AC
and B3D3 ≤ BD is strict.

8. (A.Zaslavsky) Two triangles ABC and A′B′C ′ are given. The lines AB and
A′B′ meet at point C1, and the lines parallel to them and passing through C
and C ′ respectively meet at point C2. The points A1, A2, B1, B2 are defined
similarly. Prove that A1A2, B1B2 and C1C2 concur.

First solution Apply a polar transform with center O. Now we have (we use
new denotations) two triangles A1B1C1 and A2B2C2 such that the cevians
A1A

′
1, B1B

′
1, and C1C

′
1 in the first triangle and the cevians A2A

′
2, B2B

′
2, and

C2C
′
2 in the second triangle are all concurrent in O. Let Pa be the intersection

of A1A2 and A′
1A

′
2, define Pb and Pc similarly, now we wish to prove that Pa,

Pb, and Pc are collinear.

To this end, apply a projective transform that maps Pa and Pb to infinity.
Then OA′

1 : A
′
1A1 = OA′

2 : A
′
2A2 and OB′

1 : B
′
1B1 = OB′

2 : B
′
2B2. However,

OA′
1/A

′
1A1+OB′

1/B
′
1B1+OC ′

1/C
′
1C1 = SOB1C1

/SA1B1C1
+SOC1A1

/SA1B1C1
+



SOA1B1
/SA1B1C1

= 1 (signed areas) and similarly for the second triangle, so
OC ′

1 : C
′
1C1 = OC ′

2 : C
′
2C2 and Pc is at infinity, too.

Second solution. Note that for any point X lying on C1C2 we have (the
areas are directed)

SXABSA′B′C ′ = SXA′B′SABC .

To prove this equality it is sufficient to note that it is correct for C1, C2.
Also it is easy to see that this equality is not true for all points of the plane,
therefore this is the equation of line C1C2. Similarly we can find the equations
of lines A1A2 and B1B2. It is evident that the point satisfying two of these
three equations satisfy the third one.


