
XIV GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The correspondence round. Solutions

1. (L.Shteingarts, grade 8) Three circles lie inside a square. Each of them touches externally
two remaining circles. Also each circle touches two sides of the square. Prove that two of
these circles are congruent.
Solution. If two circles are inscribed into the same angle of the square, then the third one
can not touch them and two sides. Hence we can suppose that the circles are inscribed
into the angles A, B and C of square ABCD. But then two circles inscribed into angles
A and C are symmetric with respect to diagonal BD, therefore they are congruent.

2. (N.Moskvitin, grade 8) A cyclic quadrilateral ABCD is given. The lines AB and DC
meet at point E, and the lines BC and AD meet at point F . Let I be the incenter of
triangle AED, and a ray with origin F be perpendicular to the bisector of angle AID. In
which ratio this ray dissects the angle AFB?
Answer. 1 : 3.
Solution. Note that the angle between the bisectors of angles AED and AFB is equal
to the semisum of angles FAE and FCE, i.e. 90◦. Thus the angle between the bisector
of angle AFB and the ray FK, where K is the projection of F to the bisector of angle
AID, is equal to 180◦ − ∠EIK = 180◦ − (90◦ + ∠A/2) − (180◦ − ∠A/2 − ∠D/2)/2 =
(∠D − ∠A)/4 = ∠AFB/4 (fig.2), therefore ∠AFK = ∠AFB/4.
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3. (A.Zaslavsky, grade 8) Let AL be the bisector of triangle ABC, D be its midpoint, and
E be the projection of D to AB. It is known that AC = 3AE. Prove that CEL is an
isosceles triangle.
Solution. Let F be the projection of L to AB, and G be the reflection of E about F . By
the Thales theorem we have AE = EF = FG and AG = 3AE = AC. Since AL is the
bisector of angle A, and FL is the perpendicular bisector to segment EG, we obtain that
CL = LG = LE (fig.3).
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4. (D.Shvetsov, grade 8) Let ABCD be a cyclic quadrilateral. A point P moves along the arc
AD which does not contain B and C. A fixed line l, perpendicular to BC, meets the rays
BP , CP at points B0, C0 respectively. Prove that the tangent at P to the circumcircle
of triangle PB0C0 passes through some fixed point.

Solution. Let the tangent meet the circumcircle of ABCD for the second time at point
Q. Then ∠BPQ = ∠B0C0P = 90◦ −∠BCP = 90◦ −∠BQP (fig.4). Thus ∠PBQ = 90◦,
i.e. PQ is a diameter of circle ABCD. Hence all tangents pass through the center of this
circle.

A

B

C

D

O

P

Q

B0

C0

Fig. 4

5. (N.Moskvitin, grades 8–9) The vertex C of equilateral triangles ABC and CDE lies on
the segment AE, and the vertices B and D lie on the same side with respect to this
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segment. The circumcircles of these triangles centered at O1 and O2 meet for the second
time at point F . The lines O1O2 and AD meet at point K. Prove that AK = BF .

Solution. Note that triangles ACD and BCE are congruent because AC = BC, CD =
CE and ∠ACD = ∠BCE = 120◦. Also, since ∠BFC = 120◦ and ∠CFE = 60◦, we
obtain that F lies on the segment BE. Finally triangles O1CO2 and ACD are similar,
hence ∠CO1K = ∠CAK, i.e the points A, O1, K and C are concyclic (fig.5). Therefore
∠ACK = 180◦ − ∠AO1K = 60◦ − ∠CO1K = 60◦ − ∠CBF = ∠BCF , which yields the
required equality.
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6. (L.Shteingarts, grades 8–9) Let CH be the altitude of a right-angled triangle ABC (∠C =
90◦) with BC = 2AC. Let O1, O2 and O be the incenters of triangles ACH, BCH and
ABC respectively, and H1, H2, H0 be the projections of O1, O2, O respectively to AB.
Prove that H1H = HH0 = H0H2.

Solution. Similarity of triangles HAC and HCB implies HO2 = 2HO1, thus HH2 =
HH1. So we have to prove that H1H0 = 2H0H2. But H1H0 = AH0 −AH1 = AH0(AB −
AC)/AB = (AB + AC − BC)(AB − AC)/2AB = (BC2 − BC(AB − AC))/2AB =
BC(AC+BC−AB)/2AB. Similarly H0H2 = AC(AC+BC−AB)/2AB, and we obtain
the required equality.

7. (I.Spiridonov, grades 8–9) Let E be a common point of circles w1 and w2. Let AB be a
common tangent to these circles, and CD be a line parallel to AB, such that A and C lie
on w1, B and D lie on w2. The circles ABE and CDE meet for the second time at point
F . Prove that F bisects one of arcs CD of circle CDE.

Solution. Let the lines AC and BF meet at point H, and the lines BD and AF meet
at point G.
Since AB touches the circumcircle of triangle CAE, we have (CA,CE) = (AB,AE).
Since ABEF is a cyclic quadrilateral, we have (AB,AE) = (FB,FE). Then

(CH,CE) = (CA,CE) = (AB,AE) = (FB,FE) = (FH,FE)

(CH,CE) = (FH,FE)

and CHFE is a cyclic quadrilateral. Similarly we obtain that DGFE is cyclic. Since
CFED is cyclic, we obtain that C, D, E, F , H, G are concyclic (fig.7).
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Applying the Pascal theorem to cyclic hexagon FFHCDG we obtain that the common
points of FF and CD, FH and DG, HC and GF are collinear (line FF is the tangent
at F to the circle CFD, denote this line by l). So A, B and the common point of l and
CD are collinear. But AB ∥ CD, therefore l ∥ CD and F is the midpoint of arc CD.

8. (K.Kadyrov, grades 8–9) Restore a triangle ABC by the Nagel point, the vertex B and
the foot of the altitude from this vertex.

Solution. Since the centroid of the triangle divides the segment between the Nagel point
N and the incenter as 2 : 1, we can find the radius of the incircle (we know the altitude
and the distance from N to the base). Now, using the formulas for the area S = bhb/2 =
pr = (p − b)rb, we can find the radius rb of the excircle. Since the excircle touches the
base at its common point with BN , we can construct this circle, draw the tangents to it
from B, and restore the triangle.

9. (B.Frenkin, grades 8–9) A square is inscribed into an acute-angled triangle: two vertices
of this square lie on the same side of the triangle and two remaining vertices lies on two
remaining sides. Two similar squares are constructed for the remaining sides. Prove that
three segments congruent to the sides of these squares can be the sides of an acute-angled
triangle.

Solution. Consider the greatest of three squares. Let its vertices K, L lie on AB, and
the vertices M , N lie on BC, AC respectively. Draw the perpendiculars MX, NY to
AC, BC respectively and the line passing through M , parallel to AC and meeting AB at
point Z (fig.9). Since MX < MN = ML < MZ, the side of the inscribed square having
the base on AC is greater than MX. Similarly the side of the square having the base
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on BC is greater than NY . Since MN2 − MX2 = NX2 < NY 2, the triangle with the
sidelengths MN , MX, NY is acute-angled. The more so, the sides of the three squares
can form an acute-angled triangle.
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10. (Folklore, grades 8–9) In the plane, 2018 points are given such that all distances between
them are different. For each point, mark the closest one of the remaining points. What is
the minimal number of marked points?

Answer. 449.

Solution. Divide the points into classes such that all points of the same class have the
same closest point. Note that each class contains at most five points. In fact, if B is closest
for A1, A2, . . . , An then A1A2 is the greatest side of triangle A1A2B, thus ∠A1BA2 > 60◦.
The same is true for the angles A2BA3, . . . , AnBA1. Thus n ≤ 5. A similar argument
shows that if B is closest to A1, . . . , A5 then one of these points is closest to B and the
class of B contains less than five points. Therefore at least 2n/9 points of n points have
to be marked, and for n = 2018 we have at least 449 marked points.

On the other hand, consider the configuration of 9 points on fig.10. Point A is closest for
five points marked by a circ, and point B is closest for four points marked by a square.
Take now 224 such groups, placed at a great distance one from another, and to one of
them add two points such that C is closest to them. In this configuration 223 ·2+3 = 449
points are marked.
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11. (A.Zaslavsky, grades 8–9) Let I be the incenter of a nonisosceles triangle ABC. Prove
that there exists a unique pair of points M , N lying on the sides AC, BC respectively,
such that ∠AIM = ∠BIN and MN ∥ AB.

Solution. Consider the lines passing through A and B and parallel to IM , IN respectively.
Since MN ∥ AB, their common point J lies on the ray CI and ∠IAJ = ∠IBJ . Thus
the radii of circles AIJ and BIJ are equal, i.e. these circles are symmetric with respect
to IJ . Hence the circle AIJ passes through the reflection B′ of B about the bisector of
angle C (fig.11). But A, B, I and B′ are concyclic. Therefore the circles AIJ and BIJ
coincide and J is the excenter of the triangle. Then ∠AIM = ∠BIN = 90◦.
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12. (A.Didin, grades 8–9) Let BD be the external bisector of a triangle ABC with AB > BC;
K and K1 be the touching points of side AC with the incicrle and the excircle centered
at I and I1 respectively. The lines BK and DI1 meet at point X, and the lines BK1 and
DI meet at point Y . Prove that XY ⊥ AC.

Solution. Since I and I1 lie on the bisector of angle B, we have BD ⊥ BI. Hence B,
K lie on the circle with diameter BI, and B, K1 lie on the circle with diameter BI1.
Therefore ∠Y DK = ∠IBX, ∠Y BI1 = ∠KDX, ∠Y BX = ∠Y DX and points B, D, X,
Y are concyclic (fig.12). Thus ∠XYD = ∠XBD = 90◦ − ∠Y DK, i.e. XY ⊥ AC.
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13. (G.Feldman, grades 9–11) Let ABCD be a cyclic quadrilateral, and M , N be the midpoints
of arcs AB and CD respectively. Prove that MN bisects the segment between the
incenters of triangles ABC and ADC.

Solution. Clearly the incenters I, J of triangles ABC and ADC lie on the segments CM
and AN respectively. Also by the trident theorem IM = AM = 2R sin∠ANM . Thus
the distance from I to MN is equal to IM sin∠NMC = 2R sin∠ANM sin∠NMC. We
obtain the same expression for the distance from J to MN . Since I and J lie on the
opposite sides from MN , this equality yields the assertion of the problem (fig.13).
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14. (M.Kungozhin, grades 9–11) Let ABC be a right-angled triangle with ∠C = 90◦, K, L,
M be the midpoints of sides AB, BC, CA respectively, and N be a point of side AB. The
line CN meets KM and KL at points P and Q respectively. Points S, T lying on AC
and BC respectively are such that APQS and BPQT are cyclic quadrilaterals. Prove
that

a) if CN is a bisector, then CN , ML and ST concur;

b) if CN is an altitude, then ST bisects ML.

Solution. a) By the assumption we have CP = CM
√
2 = AC/

√
2, CQ = BC/

√
2.

Hence CS = CP ·CQ/AC = BC/2 = BL. Similarly CT = CM . Therefore the segments
ML and ST are symmetric with respect to CN and meet on this line.

b) From the similarity of triangles CMP , QLC and ACB we obtain that CP = AC ·
AB/2BC, CQ = BC · AB/2AC. Thus CS = AB2/4AC, CT = AB2/4BC and the
triangle CST is similar to CBA. Therefore ST is perpendicular to the median of ABC,
and since the altitude of triangle CST is equal to AB/4, we obtain that its foot coincides
with the midpoint of ML.

15. (D.Hilko, grades 9–11) The altitudes AH1, BH2, CH3 of an acute-angled triangle ABC
meet at point H. Points P and Q are the reflections of H2 and H3 with respect to H.
The circumcircle of triangle PH1Q meets for the second time BH2 and CH3 at points R
and S. Prove that RS is a medial line of triangle ABC.

Solution. Consider the common point R′ of the medial line M2M3 and the altitude BH2.
Prove that R′ lies on the circumcircle of triangle PH1Q.

Since BH3H2C is a cyclic quadrilateral, we have H3H ·HC = H2H ·HB. Then HB ·HP =
HC ·HQ and PBQC is a cyclic quadrilateral. Therefore ∠H2PQ = ∠BCQ = ∠BAH1.
Also, since R′ lies on the medial line of ABC, we obtain that ∠H1AR

′ = ∠AH1R
′.

Now the triangles H3HH1 and BM3R
′ are similar because ∠M3BR′ = ∠H3H1H, and

∠M3R
′B = ∠HH3H1. Thus

H3H1

M3R′ =
HH1

BM3

.

Since H3H = HQ and BM3 = M3A, we have

QH

M3R′ =
HH1

AM3

.

Clearly ∠QHH1 = ∠B = ∠AM3R
′. This implies that triangles AM3R

′ and HH1Q are
similar, hence ∠HH1Q = ∠M3AR

′. Then ∠QH1R
′ = ∠HH1Q− ∠HH1R

′ = ∠M3AR
′ −

∠R′AH1 = ∠BAH1 = ∠R′PQ. Therefore PH1QR′ is a cyclic quadrilateral (fig.15). Hence
R = R′, i.e R lies on the medial line of ABC. Similarly S lies on the medial line and we
obtain the required assertion.
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16. (P.Ryabov, grades 9–11) Let ABC be a triangle with AB < BC. The bisector of angle
C meets the line parallel to AC and passing through B, at point P . The tangent at B
to the circumcircle of ABC meets this bisector at point R. Let R′ be the reflection of R
with respect to AB. Prove that ∠R′PB = ∠RPA.

Solution. Since the lines BR and BP are symmetric with respect to the bisector of
angle B, we obtain that P and R are isogonally conjugated with respect to ABC. Thus
∠R′AB = ∠RAB = π−∠CAP , i.e. lines AR′ and AC are symmetric with respect to the
bisector of angle A. Similarly BR′ and BC are symmetric with respect to the bisector
of angle B. Therefore R′ and C are isogonally conjugated with respect to triangle ABP ,
which yields the required assertion (fig.16).
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17. (S.Takhaev, grades 10–11) Let each of circles α, β, γ touches two remaining circles
externally, and all of them touch a circle Ω internally at points A1, B1, C1 respectively.
The common internal tangent to α and β meets the arc A1B1 not containing C1 at point
C2. Points A2, B2 are defined similarly. Prove that the lines A1A2, B1B2, C1C2 concur.

Solution. Let the tangents to Ω at A1, B1, C1 form a triangle ABC. Without loss of
generality suppose that Ω is the incircle (not the excircle) of this triangle. Note that, for
example, C is the radical center of circles α, β and Ω, i.e. C lies on the common internal
tangent to α and β. Also the common tangents to α, β, γ concur at their radical center,
denote it by X. Hence we can reformulate the assertion of the problem as follows.

A triangle ABC and a point X inside its incircle are given. The segments XA, XB, XC
meet the incircle at A2, B2, C2 respectively, and the sides BC, CA, AB touch it at A1,
B1, C1. Then A1A2, B1B2 and C1C2 concur.

Applying the sinus theorem to triangles A1CC2 and B1CC2 we obtain

A1C2

B1C2

=
sin∠A1CC2

sin∠B1CC2

· sin∠CB1C2

sin∠CA1C2

=
sin∠A1CC2

sin∠B1CC2

· B1C2

A1C2

.

Now applying the Ceva theorem to triangles ABC and A1B1C1 we obtain the required
assertion.

18. (A.Polyanskii, N.Polyanskii, grades 10–11) Let C1, A1, B1 be points on sides AB,BC,CA
of triangle ABC, such that AA1, BB1, CC1 concur. The rays B1A1 and B1C1 meet the
circumcircle of the triangle at points A2 and C2 respectively. Prove that A,C, the common
point of A2C2 and BB1 and the midpoint of A2C2 are concyclic.

Solution. Let K be the common point of A2C2 and AC, M be the midpoint of A2C2, and
N be the second common point of circle ACM with A2C2. Then KM ·KN = KA ·KC =
KA2 · KC2, i.e the quadruple A2, C2, K, N is harmonic. Projecting A2C2 from B1 to
AA1 we obtain that A1, the common point of AA1 with B1C1, A and the common point
of BN with AA1 also form a harmonic quadruple. Thus BN passes through the common
point of AA1, BB1 and CC1, i.e. coincides with BB1.

19. (A.Myakishev, grades 10–11) Let a triangle ABC be given. On a ruler three segment
congruent to the sides of this triangle are marked. Using this ruler construct the orthocenter
of the triangle formed by the tangency points of the sides of ABC with its incircle.

Solution. On the extension of AC beyond C, construct the segment CX = BC. We
obtain the line BX parallel to the bisector of angle C. Similarly we can construct the
line parallel to the bisector of C and passing through A, and having two parallel lines
we can draw a line parallel to them and passing through an arbitrary point. Hence it is
sufficient to construct the touching points A′, B′, C ′ of the incircle with BC, CA, AB
(the bisectors of ABC are perpendicular to the sides of A′B′C ′). On the extensions of
AB beyond A and B, construct the segments AU = BC and BV = AC respectively.
Since AC ′ = s − BC, where s is the semiperimeter of ABC, we obtain that C ′ is the
midpoint of UV . Drawing the lines through U and V parallel to two bisectors, we obtain
a parallelogram with diagonal UV , and drawing its second diagonal we find C ′.

20. (A.Zimin, grades 10–11) Let the incircle of a nonisosceles triangle ABC touch AB, AC
and BC at points D, E and F respectively. The corresponding excircle touches the side
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BC at point N . Let T be the common point of AN and the incircle, closest to N , and K
be the common point of DE and FT . Prove that AK||BC.

Solution. Let G be the point of the incircle opposite to F . Since the incircle and the
excircle are homothetic with center A, we obtain that A, G and N are collinear, and
FT ⊥ AN . The polar transformation with respect to the incircle maps ED into A, maps
FT into the common point of tangents at F and T , i.e. the common midpoint of FN and
BC, and maps the line through A parallel to BC into the common point L of ED and
GF . Thus we have to prove that AL is a median of ABC (fig.20).
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Since AE = AD, we have sin∠CAL : sin∠BAL = EL : DL. Applying the sinus theorem
to triangles EFL and EDL, we obtain EL : DL = EF sin∠EFL : DF sin∠DFL. But
∠EFL = ∠C/2, ∠DFL = ∠B/2, and EF : DF = cos∠C/2 : cos∠B/2. Therefore
sin∠CAL : sin∠BAL = AB : AC, i.e. AL is a median.

21. (proposed by B.Frenkin, grades 10–11) In the plane a line l and a point A outside it are
given. Find the locus of the incenters of acute-angled triangles having a vertex A and an
opposite side lying on l.

Solution. Let H be the projection of A to l. Since a triangle is acute-angled, we obtain
that its incenter I and one of its vertices, for example B, lie on the opposite sides with
respect to AH. Hence the distance from I to AH is less than the distance from I to AB
which is equal to the inradius r, i.e. the distance from I to l. Therefore I lies inside the
right angle formed by the bisectors of two angles between AH and l. Also it is clear that
r < AH/2, i.e. I lies inside a strip bounded by l and the perpendicular bisector to AH.
Finally, since angle A is acute, we have AI = r/ sin∠A/2 > r

√
2, hence I lies between

the branches of an equilateral hyperbola with focus A and directrix l. On the other hand,
for an arbitrary point satisfying these conditions we can construct the circle centered at
this point and touching l, draw the tangents to it from A and obtain an acute-angled
triangle. So the required locus is bounded by the bisectors of angles between l and AH,
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the perpendicular bisector to AH and the corresponding branch of the hyperbola (the
bounds are not included).

22. (N.Beluhov, grades 10–11) Six circles of unit radius lie in the plane so that the distance
between the centers of any two of them is greater than d. What is the least value of d
such that there always exists a straight line which does not intersect any of the circles
and separates the circles into two groups of three?

Solution. Let O1O2O3 be an equilateral triangle of side d, O4 be such that O1O4 = d
and ∠O2O1O4 = ∠O4O1O3 = 150◦, and O5 and O6 be defined analogously so that the
complete figure is rotationally symmetric about the center of △O1O2O3. The six circles
centered at O1, O2, . . . , O6 show that d ≥ 2

sin 15◦
= 2(

√
2 +

√
6).

Put d = 2
sin 15◦

. Let us show that a halving line always exists.

Enumerate the circles’ centers from 1 to 6, and let l be a straight line such that the six
centers’ projections onto l are distinct. The order of the projections from left to right
gives us a permutation σ of the numbers 1 through 6.

Rotate l counterclockwise until it makes a complete 360◦ turn. Each time that l becomes
perpendicular to a line through two centers (it suffices to consider the case when no three
centers are collinear), two neighbouring elements of σ switch their positions. Since there
are

(
6
2

)
= 15 such lines, 2 · 15 = 30 such transpositions occur.

We say that a transposition is external if, at the time when it takes place, the two centers
involved are either the first two or the last two elements of σ (i.e., AB ◦◦◦◦ → BA◦◦◦◦
or ◦ ◦ ◦ ◦ AB → ◦ ◦ ◦ ◦ BA). Otherwise, we say that a transposition is internal.

Since an external transposition corresponds to a side of the centers’ convex hull, there are
at least 2 · 3 = 6 external transpositions and at most 30− 6 = 24 internal ones.

Since 360◦

24
= 15◦, there is some interval s of the rotation of l having length at least 15◦,

containing no internal transpositions. This means that throughout s both the third and
the fourth element of σ remain fixed. Let A and B be those elements.

Consider the strip L bounded by the lines through A and B perpendicular to l. Throughout
s, L does not contain any centers apart from A and B. Since the length of s is at least
15◦, there is some position of L during s such that the acute angle between AB and L
is at least 15◦ and, consequently, the width of L is greater than two. The midline of this
instance of L does the job.

23. (A.Kanel-Belov, 10–11) (grades 10–11) The plane is divided into convex heptagons with
diameters less than 1. Prove that an arbitrary disc with radius 200 intersects most than
a billion of them.

Solution. Consider a disc K with radius R. Let k vertices of heptagons lie inside K. The
average angle at these vertices is at most 2π/3. (If a vertex is common for more than
three heptagons then the average angle is less than 2π/3, and if a vertex lies on a side
then the average angle is at most π/2).

On the other hand, consider the heptagons lying inside K or intersecting the bounding
circle of K. Their average angle is 5π/7. Let n of their vertices lie outside K, all of them
lie at a distance not greater than 1 from K. Each angle in such vertex is less than π (of
course this is true for any angle of a convex polygon).
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To satisfy the balance, the inequality nπ + k · 2π/3 > (n + k)5π/7 is needed. Hence
n > k/6.

So the number of vertices lying at a distance not greater than 1 from K is greater than
the number of vertices inside K divided by 6.

Now note that (1 + 1/6)6 > 2, (1 + 1/6)60 > 210 > 1000 and (1 + 1/6)180 > 10003.

Hence the number of heptagons (the number of angles divided by 7) intersecting a disc
with radius 200 is at least 109.

24. (A.Solynin, grades 10–11) A crystal of pyrite is a parallelepiped with dashed faces.

 

The dashes on any two adjacent faces are perpendicular. Does there exist a convex
polytope with the number of faces not equal to 6, such that its faces can be dashed
in such a manner?

Answer. Yes.

Solution. Take a quadrilateral ABCD. Let the lines AB and CD meet at point X, and
the lines AD and BC meet at point Y . Draw the plane passing through the line XY and
perpendicular to the plane ABCD, and a point S on this plane such that ∠XSY = 90◦.
Now dash the faces SAB and SCD of pyramid SABCD by lines parallel to SX, dash the
faces SBC and SCD by lines parallel to SY , and dash the face ABCD by perpendiculars
to the plane SXY . Clearly the obtained dashes satisfy the condition.
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