
XV GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The correspondence round. Solutions

1. (I.Kukharchuk, 8) Let AA1, CC1 be the altitudes of triangle ABC, and P be an arbitrary
point of side BC. Point Q on the line AB is such that QP = PC1, and point R on the
line AC is such that RP = CP . Prove that QA1RA is a cyclic quadrilateral.

Solution. It is clear that A, C, A1, C1 are concyclic. Denote the corresponding circle by
ω1. Furthermore the midpoints X and Y of segments QC1 and RC are the projections of
P to AB and AC respectively, thus X, Y and A1 lie on the circle ω2 with diameter AP .
Let O be symmetric to the center of ω1 (the midpoint of AC) about the center of ω2.
By Thales theorem, the projections of O to AB and AC are the midpoints of segments
AQ and AR respectively, i.e. O is the circumcenter of triangle AQR. Since O lies on the
perpendicular bisector to AA1, the point A1 also lies on the circle ABC (fig.1).
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Fig. 1

2. (D.Shvetsov, 8) The circle ω1 passes through the center O of the circle ω2 and meets it at
points A and B. The circle ω3 centered at A with radius AB meets ω1 and ω2 at points
C and D (distinct from B). Prove that C, O, D are collinear.

Solution. Since the arcs AC and AB of ω1 are congruent, we obtain that ∠AOC =
180◦ − ∠AOB. But it is clear that ∠AOD = ∠AOB (fig.2), so we obtain the required
assertion.
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3. (L.Shteingarts, 8) The rectangle ABCD lies inside a circle. The rays BA and DA meet
this circle at points A1 and A2. Let A0 be the midpoint of A1A2. Points B0, C0, D0 are
defined similarly. Prove that A0C0 = B0D0.
Solution. Let X, Y be the projections of the center of the circle to AB, CD respectively
(fig.3). Then BB1 − AA1 = (XB1 − XB) − (XA1 − XA) = AX − BX = DY −
CY = CC1 −DD1. Therefore the projection of segment A0C0 to the line AB, equal to
(A1B1 + C1D1 − AA1 − CC1)/2, is congruent to the projection of segment B0D0 to the
same line. Similarly the projections of these segments to the line AD are congruent, thus
the segments are congruent too.
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4. (A.Trigub, 8) The side AB of triangle ABC touches the corresponding excircle at point
T . Let J be the center of the excircle inscribed into angle A, and M be the midpoint of
AJ . Prove that MT = MC.
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Solution. Let R be the projection of J to AC. Then CR = p−AC = AT . Furthermore
MR = MA as a median of the right-angled triangle AJR, and ∠MRA = ∠MAR =
∠MAT (fig.4). Hence the triangles MTA and MCR are congruent and MT = MC.
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5. (F.Ivlev, 8–9) Let A, B, C and D be four points in general position, and ω be a circle
passing through B and C. A point P moves along ω. Let Q be the common point of
circles ABP and PCD distinct from P . Find the locus of points Q.

Solution. We have that ∠(QA,QD) = ∠(QA,BA) + ∠(BA,DC) + ∠(DC,DQ) =
∠(QP,PB) + ∠(BA,DC) + ∠(PC, PQ) = ∠(PC, PB) + ∠(BA,DC) do not depend on
P . Therefore the locus of Q is the circle passing through A and D.

6. (A.Akopyan, (8–9) Two quadrilaterals ABCD and A1B1C1D1 are mutually symmetric
with respect to the point P . It is known that A1BCD, AB1CD and ABC1D are cyclic
quadrilaterals. Prove that the quadrilateral ABCD1 is also cyclic.

Solution. We have ∠(AD1, D1B) = ∠(AD1, AB1) + ∠(A1B,D1B) = ∠(A1D,A1B) +
∠(AB1, B1D) = ∠(AC,CD) + ∠(CD,BC) = ∠(AC,BC). Thus A, B, C, D1 are con-
cyclic.

7. (P.Bibikov, (8–9) Let AHA, BHB, CHC be the altitudes of the acute-angled triangle
ABC. Let X be an arbitrary point of segment CHC , and P be the common point of
circles with diameters HCX and BC, distinct from HC . The lines CP and AHA meet at
point Q, and the lines XP and AB meet at point R. Prove that A, P , Q, R, HB are
concyclic.

Solution. Since BCPHC is a cyclic quadrilateral, we obtain ∠CPHC = 180◦ − ∠B =
180◦ − ∠AHHC , where H is the orthocenter of ABC. Hence HQPHC is cyclic, i.e.
∠CQH = ∠HHCP . But ∠HHCP = ∠HCRP because HCP is an altitude of the right-
angled triangle HCRX. Thus A, R, P and Q are concyclic. Since HCPHBC is cyclic, we
obtain ∠PHBA = ∠PHCC = ∠PRB, therefore HB lies on the same circle (fig.7).
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8. (M.Etesamifard, 8–9) The circle ω1 passes through the vertex A of the parallelogram
ABCD and touches the rays CB, CD. The circle ω2 touches the rays AB, AD and
touches ω1 externally at point T . Prove that T lies on the diagonal AC.

Solution. Let T ′ be the common point of ω1 and the ray AC. The homothety with
center T ′ mapping C to A maps the rays CB, CD to AD, AB respectively. Thus it maps
ω1 to circle ω′ which touches these rays and is tangent to ω1 at T ′. Therefore ω′ coincides
with ω2, and T ′ coincides with T .

9. (E.Bakaev, 8–9) Let AM be the midpoint of side BC of an acute-angled triangle ABC,
and AH be the foot of the altitude to this side. Points BM , BH , CM , CH are defined
similarly. Prove that one of the ratios AMAH : AHA, BMBH : BHB, CMCH : CHC is
equal to the sum of two remaining ratios.

Solution. Note that, for example, CMCH = |ACH −BCH |/2. Therefore CMCH/CHC =
| cotA− cotB|/2. The required assertion follows from this and two similar equalities.

10. (A.Trigub, 8–9) Let N be the midpoint of arc ABC of the circumcircle of triangle ABC,
and NP , NT be the tangents to the incircle of this triangle. The lines BP and BT
meet the circumcircle for the second time at points P1 and T1 respectively. Prove that
PP1 = TT1.

Solution. Let I be the incenter of ABC. Since BN is the external bisector of angle
B, we have ∠IBN = 90◦ = ∠IPN = ∠ITN . Thus B, I, N , T , P are concyclic, and
since IT = IP , we obtain that BI bisects angle PBT . Hence P1 and T1 are symmetric
with respect to the diameter of the circumcircle passing through N , i.e. NP1 = NT1.
Furthermore ∠NPB = ∠NTB and NP = NT , Therefore the triangles NPN1 and NTT1

are congruent and we obtain the required assertion (fig.10).
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11. (M.Saghafian, 8–9) Morteza marks six points in the plane. He then calculates and writes
down the area of every triangle with vertices in these points (20 numbers). Is it possible
that all of these numbers are integers, and that they add up to 2019?

Answer. No.

Solution. Consider any four of marked points. If they form a convex quadrilateral
ABCD, then SABC + SACD = SABD + SBCD. And if one point lies inside the triangle
formed by three remaining ones, then the area of this triangle is equal to the sum of areas
of three inner triangles. In both cases the sum of areas of four triangles formed by these
points will be even. If we sum up all such sums then each triangle will be counted three
times, therefore the sum of all 20 areas is also even.

12. (B.Frenkin, 8–11) Let A1A2A3 be an acute-angled triangle inscribed into a unit circle
centered at O. The cevians from Ai passing through O meet the opposite sides at points
Bi (i = 1, 2, 3) respectively.

(a) Find the minimal possible length of the longest of three segments BiO.

(b) Find the maximal possible length of the shortest of three segments BiO.

Answer. (a), (b) 1/2.

Solution. Firstly let us show that among two segments BiO, the longer segment is
directed to the shorter side (clearly, equality of sides implies equality of segments). Sup-
pose, for example, that A1A3 < A2A3. Since ∠OA1A2 = ∠OA2A1, we have ∠OA2B1 <
∠OA1B2. For triangles A1OB2 and A2OB1, we have A1O = A2O, ∠A1OB2 = ∠A2OB1.
Hence BO1 < B2O as required.

(a) Suppose that in an acute-angled triangle A1A2A3 with the circumcircle of radius
1 the side A1A2 is the shortest. Then the segment B3O is the longest among BiO.
Since ∠A3 ≤ 60◦, we have ∠A1OA2 ≤ 120◦ and ∠OA1A2 ≥ 30◦. From O, draw the
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perpendicular OP to A1A2. Then 1/2 ≤ OP ≤ B3O. The equality is attained for the
equilateral triangle.

b) Suppose that in an acute-angled triangle A1A2A3 with the circumcircle of radius 1 the
side A1A2 is the shortest, and the side A2A3 is the longest, so that the segment B1O is
the shortest among BiO. Let us move point A1 along the circumcircle towards point A2.
Then the segment B1O will increase because it will move away from the perpendicular
from O to A2A3. When the angle A1A3A2 will equal 180◦ − 2∠A2A1A3, we will obtain
an isosceles triangle with A1A3 = A2A3 ≥ A1A2.

In triangle A1B1A3, the segment A3O is a bisector, so B1O/A1O = B1A3/A1A3 =
B1A3/A2A3. It is easily seen that the last ratio does not exceed 1/2 for A1A2 ≤ A1A3.
Hence B1O ≤ 1/2. The equality is attained for the equilateral triangle.

13. (G.Filippovsky, 9–10) Let ABC be an acute-angled triangle with altitude AT = h. The
line passing through its circumcenter O and incenter I meets the sides AB and AC at
points F and N respectively. It is known that BFNC is a cyclic quadrilateral. Find the
sum of the distances from the orthocenter of ABC to its vertices.

Answer. 2h.

Solution. Since BNFC is cyclic, we have ∠ONA = ∠B. On the other hand, ∠OAC =
π/2 − ∠B. Thus AO ⊥ OI. Draw the perpendicular IT to AH. Since AI bisects
angle OAH, we obtain that the right-angled triangles AOI and ATI are congruent, i.e.
AT = AO = R and h = AH = R + r, where R and r are the circumradius and the
inradius of triangle ABC (fig.13). It is known that the sum of distances from O to the
sidelines of the triangle is equal to R+ r, and the sum of distances from the orthocenter
to the vertices is twice as large, which yields the answer.
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14. (S.Arutyunyan, 9–11) Let the side AC of triangle ABC touch the incircle and the corre-
sponding excircle at points K and L respectively. Let P be the projection of the incenter
onto the perpendicular bisector of AC. It is known that the tangents to the circumcircle
of triangle BKL at K and L meet on the circumcircle of ABC. Prove that the lines AB
and BC touch the circumcircle of triangle PKL.
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Solution. Suppose that AB > BC. Let M be the midpoint of AC, N be the midpoint of
arc ABC, NW and KD be the diameters of the circumcircle and the incircle respectively.
By the assumption, the tangents to the circle BKL at K and L meet at W , i.e. BW is the
symedian of triangle BKL. Furthermore B, D, L are collinear and BW bisects segment
KD. Hence triangles BKL and BDK are similar, i.e. ∠BMC = ∠BID = (∠C−∠A)/2.
Then ∠BMN = (π − ∠C + ∠A)/2 = ∠BNM and BM = BN . Let S be a point on the
arc AWC such that ∠SBC = ∠ABM . Then ∠SNB = ∠ABM + ∠BAC = ∠BMC =
∠NSB, i.e. BS = BN = BM (fig.14). By similarity of triangles ABM and SBC we have
AB ·BC = BM ·BS = BM2 = (2AB2+2BC2−AC2)/4. Therefore AC2 = 2(AB−BC2),
or AC =

√
2KL. Applying the Stewart theorem to triangle AWC and cevian WK we

obtain that WK2 = WC2 − AK · KC = WI2 − (AM2 − MK2) = WI2 − MK2 =
WI2 −PI2 = WP 2 (by the trident theorem, WC = WI). Thus P , K, L lie on the circle
centered at W .
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Let R, r be the circumradius and the inradius of triangle ABC. Then the distance from
W to line AB is equal to BW sin ∠B

2
= 2R cos ∠C−∠A

2
sin ∠B

2
= R(sin∠A + sin∠C). By

the Carnot theorem R+ r = R(sin∠A+sin∠B+sin∠C), therefore this distance is equal
to R(1− cos∠B)+ r = WM +MP = WP , which is equivalent to the required assertion.

15. (M.Etesamifard, 9–11) The incircle ω of triangle ABC touches the sides BC, CA and
AB at points D, E and F respectively. The perpendicular from E to DF meets BC at
point X, and the perpendicular from F to DE meets BC at point Y . The segment AD
meets ω for the second time at point Z. Prove that the circumcircle of the triangle XY Z
touches ω.
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Solution. Let I be the center of ω. Note that ∠FY X = ∠ICB = ∠FEX, i.e. XY EF
is a cyclic quadrilateral. Now BC, EF and the tangent to ω at Z concur at the pole T
of AD with respect to ω. Hence TZ2 = TF · TE = TX · TY , i.e. TZ touches the circle
XY Z (fig.15).
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16. (M.Plotnikov, 9–11) Let AH1 and BH2 be the altitudes of triangle ABC; let the tangent
to the circumcircle of ABC at A meet BC at point S1, and the tangent at B meet AC at
point S2; let T1 and T2 be the midpoints of AS1 and BS2 respectively. Prove that T1T2,
AB and H1H2 concur.

Solution. It is clear that T1 lies on the medial line B0C0 of triangle ABC, and T1A
touches the circle AB0C0. Thus T1A

2 = T1B0 · T1C0. But B0, C0 lie on the nine-points
circle (NPC) of triangle ABC, therefore T1 lies on the radical axis of this circle and the
circumcircle. By similar reasoning for T2 we obtain that T1T2 is the radical axis of the
circumcircle and the NPC. Since A, B, H1, H2 are concyclic, we obtain that the lines AB
and H1H2 are the radical axes of the corresponding circle with the circumcircle and the
NPC respectively. Clearly these three radical axes concur.

17. (E.Bakaev, 10–11) Three circles ω1, ω2, ω3 are given. Let A0 and A1 be the common
points of ω1 and ω2, B0 and B1 be the common points of ω2 and ω3, C0 and C1 be the
common points of ω3 and ω1. Let Oi,j,k be the circumcenter of triangle AiBjCk. Prove
that the four lines of the form OijkO1−i,1−j,1−k are concurrent or parallel.

Solution. Let O be the radical center of the given circles. If O lies outside these
circles then there exists a circle centered at O and perpendicular to three given circles.
The inversion with respect to this circle saves all given circles. Therefore this inversion
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transposes A0 and A1, B0 and B1, C0 and C1, thus it transposes the circles AiBjCk and
A1−iB1−jC1−k. Hence the lines joining the centers of such pairs of circles pass through O.

If O lies inside the given circles then they are saved by the composition of the inversion and
the central symmetry with center O. Therefore in this case four lines also pass through
O.

18. (N.Beluhov, A.Zaslavsky, 10–11) A quadrilateral ABCD without parallel and without
equal sides is circumscribed around a circle centered at I. Let K, L, M and N be the
midpoints of AB, BC, CD and DA respectively. It is known that AB ·CD = 4IK · IM .
Prove that BC · AD = 4IL · IN .

Solution. Construct J such that △AJB ∼ △DIC. Then AJBI is cyclic. Let k be its
circumcircle, and let IK meet k for the second time at J ′. Then from KJ : AB = IM :
CD, IK ·KJ ′ = KA ·KB = AB2/4, and 4IK · IM = AB ·CD it follows that KJ = KJ ′

(fig. 18).
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If AB is a diameter of k, then ∠AIB = 90◦ and AD∥BC — a contradiction. Therefore,
AB is not a diameter of k. If J = J ′, then ∠ICB = ∠AIK, ∠IDA = ∠BIK and
BC = r(cot∠IBK + cot∠AIK) = r(cot∠IAK + cot∠BIK) = AD — a contradiction.
From this and KJ = KJ ′, it follows that J and J ′ are symmetric with respect to the
perpendicular bisector of AB.

Therefore, △AIK ∼ △J ′BK ≃ △JAK ∼ △IDM . From this, together with ∠IAK =
∠IAD and ∠IDM = ∠IDA, it follows that △AIK ∼ △ADI ∼ △IDM . Analogously,
△BIK ∼ △BCI ∼ △ICM .

Let P and Q be the midpoints of IA and IB. Then △IND ∼ △KPI ≃ △IQK ∼ △CLI.
Therefore, IN : ND = CL : LI and 4IL · IN = AD ·BC, as needed.

Note. A circumscribed quadrilateral ABCD that has no parallel or equal sides satisfies
the conditions of the problem if and only if its incenter I is the center of gravity of its
four vertices A, B, C, and D.

9



19. (A.Utkin, 10–11) Let ALa, BLb, CLc be the bisectors of triangle ABC. The tangents
to the circumcircle of ABC at B and C meet at point Ka, points Kb, Kc are defined
similarly. Prove that the lines KaLa, KbLb and KcLc concur.

Solution. Since ABKc is an isosceles triangle, the sine law applied to triangles ALcKc

and BLaKc implies that sin∠AKcLc : sin∠BKcLc = ALc : BLc. From this and two
similar equalities we obtain the required assertion applying the Ceva theorem.

20. (A.Zaslavsky, 10–11) Let O be the circumcenter of triangle ABC, H be its orthocenter,
and M be the midpoint of AB. The line MH meets the line passing through O and
parallel to AB at point K lying on the circumcircle of ABC. Let P be the projection of
K onto AC. Prove that PH ∥ BC.

Solution. Let Q be the projection of K to BC. Then PQ is the Simson line of K,
therefore PQ bisects segment HK, and the angle between PQ and altitude CH (the
Simson line of C) is equal to the half of angle COK. But OK is the perpendicular bisector
for segment CL, where L is the second common point of CH with the circumcircle. Hence
∠HCK = ∠CLK = ∠COK/2, i.e. PQ ∥ CK. Thus PQ bisects segment CH. Also MH
meets the circumcircle for the second time at point C ′ opposite to C, and C ′M = MH.
Therefore CK ⊥ KC ′, i.e. the corresponding sides of triangles CPQ and BHC ′ are
perpendicular. Then their medians are perpendicular too, therefore CH bisects segment
PQ and CPHQ is a parallelogram (fig.20).
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21. (A.Sgibnev, A.Zaslavsky, 10–11) An ellipse Γ and its chord AB are given. Find the locus
of orthocenters of triangles ABC inscribed into Γ.

Solution. Choose a coordinate system such that the line AB is the X-axis. Then the
equation for Γ will be (x−xa)(x−xB)+y(ax+by+c) = 0, where b > 0. The coordinates of
orthocenter H are (xC , h), where h satisfies the condition of perpendicularity AH and BC:

10



(xC−xA)(xC−xB)+hyC = 0, i.e. h = −(xC−xA)(xC−xB)/yC . But by the Vieta theorem
XH meets Γ for the second time at the point with ordinate (xC − xA)(xC − xB)/byC .
Thus the locus of orthocenters is an ellipse obtained by the contraction of Γ to AB with
coefficient −b. Since this coefficient is equal to the ratio of squares of two diameters,
perpendicular and parallel to AB, we obtain that this ellipse is similar to Γ and their
major axes are perpendicular.

22. (P.Kozhevnikov, 10–11) Let AA0 be the altitude of the isosceles triangle ABC (AB =
AC). A circle γ centered at the midpoint of AA0 touches AB and AC. Let X be an
arbitrary point of line BC. Prove that the tangents from X to γ cut congruent segments
on lines AB and AC.

First solution. For simplicity, we consider only the case when X lies inside segment
BA0. All other cases are similar.

Let B0 and C0 be the midpoints of segments AC and AB, respectively. Let one tangent
meet segment AC0 at P and let the other tangent meet segment CB0 at Q.

By Newton’s theorem for circumscribed quadrilateral APXQ, the midpoints of segments
AA0, AX, and PQ are collinear. Therefore, the midpoint R of segment PQ lies on the
midline of triangle ABC opposite to vertex A.

Let S be the reflection of point A about point R. Then S lies on line BC, and quadrilateral
APSQ is a parallelogram (fig. 22.1). Therefore, C0P : A0S = B0Q : A0S and C0P =
B0Q.
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Fig. 22.1

Let one tangent meet ray C0B at P ′, and let the other tangent meet ray B0A at Q′.
Similarly, C0P

′ = B0Q
′. Therefore, PP ′ = QQ′, as needed.

Second solution. Let one of two tangents meet AB and AC at points Y1 and Y2, and
the second one meet them at Z1 and Z2 respectively. Since the relation between these
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points is projective, it is sufficient to prove that Y1Z1 = Y2Z2 for three positions of X, i.e.
by symmetry for some point distinct from the midpoint of BC. When X tends to B then
one of points Z1, Y1 also tends to B, and the second one tends to the touching point P of
γ with AB. Let Q be distinct from A point of AC such that BQ touches γ, and let B0, C0

be the midpoints of AC, AB respectively. Then we have (B,C0, P,∞) = (Q,∞, A,B0),
i.e. AQ = BP (fig.22.2).
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23. (A.Skopenkov, (10–11) In the plane, let a, b be two closed broken lines (possibly self-
intersecting), and K, L, M , N be four points. The vertices of a, b and the points K L,
M , N are in general position (i.e. no three of these points are collinear, and no three
segments between them concur at an interior point). Each of segments KL and MN
meets a at an even number of points, and each of segments LM and NK meets a at an
odd number of points. Conversely, each of segments KL and MN meets b at an odd
number of points, and each of segments LM and NK meets b at an even number of
points. Prove that a and b intersect.

First solution. Since the vertices of a are in general position, this broken line divides
the plane into several parts which can be colored black and white regularly (i.e. in such
a way that the colors of adjacent parts are different). See the proof, for example, in [Sk,
§1.3, §2.2], [Sk18, §1.3, §2.2]. Let the "external" part be white. Consider an arbitrary
point O of self-intersection of a and take segments OA = OB = OC = OD = ε on its
links passing through, such that ABCD is a rectangle. If ε is sufficiently small then all
common points of a with b and segments KL, LM , MN , NK lie outside this rectangle.
If we construct such rectangles for all points of self-intersection and color them white,
then the black part of the plane will be the union of several not intersecting polygons.
Now recolor several rectangles to obtain a black polygon restricted by not self-intersecting
broken line a′. Construct not self-intersecting broken line b′ in the similar way. By the
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construction the broken lines a′, b′ intersect one another and meet segments KL, LM ,
MN , NK at the same points as a, b. Suppose that a′ and b′ do not intersect. Then they
divide the plane into three parts, therefore two of points K, L, M , N lie in the same part.
But this is impossible because a′ separates K and L from M and N , and b′ separates K
and N from M and L. Thus a′ and b′ intersect, and hence the given broken lines intersect
too.

Second solution. Let point C be in general position related to the vertices of a, b and
points K, L, M , N . Denote the union of segments CK ∪ CL ∪ CM ∪ CN by γ.

As in the first solution color regularly black and white the parts into which a divides
the plane. Denote the union of the black parts by α. Construct similarly the set β
corresponding to b.

If a and b do not intersect then a ∩ β is a or ∅, and α ∩ b is b or ∅. Then the following
chain of comparisons modulo 2 yields a contradiction:

0 =
(1)

|∂(γ∩α∩β)| =
(2)

| ∂γ︸︷︷︸
={K,L,M,N}

∩α∩β| + |γ∩ ∂α︸︷︷︸
=a

∩β| + |γ∩α∩ ∂β︸︷︷︸
=b

| =
(3)

1+0+0 = 1.

Here (1) is true because γ ∩α∩ β is the union of a finite number of unclosed broken lines
with even number of endpoints. The proof of (2) is not difficult (this is the «Leibnitz
formula»).

Let us prove (3). We have

{K,L,M,N}∩α∩β = ({K,L,M,N}∩α)∩({K,L,M,N}∩β) = {K,L}∩{K,N} = {K}.

If a ∩ β = ∅ then γ ∩ a ∩ β = ∅. And if a ∩ β = a then

|γ ∩ a ∩ β| = |γ ∩ a| = |KN ∩ a|+ |LM ∩ a| = 1 + 1 = 0.

Thus in both cases |γ ∩ a ∩ β| = 0. Similarly |γ ∩ α ∩ b| = 0.

Remarks. Similar reasoning about triple intersections demonstrates that the Borromeo
rings cannot be uncoupled. See [Sk, §4].

The multidimensional version of the problem, the Borromeo rings lemma, can be proved
similarly, see [AMS+]. This lemma is significant for the study of complexity of realizability
of hypergraphs in multidimensional spaces, see [MTW11, ST17].
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24. (N.Beluhov, 11) Two unit cubes have a common center. Is it always possible to number
the vertices of each cube from 1 to 8 so that the distance between each pair of identically
numbered vertices would be at most 4/5? What about at most 13/16?

Solution. Let κ = A1A2 . . . A8 be one of the two cubes (with A1A2A3A4 a unit square
and Ai adjacent to Ai+4 for all i), d1, d2, d3, and d4 be the space diagonals of κ, λ be the
second cube, and e1, e2, e3, and e4 be the space diagonals of λ. Let O be the common
center of the two cubes, s be their common circumscribed sphere, µ be a positive real
which does not exceed the diameter of s, and α be the central angle of a chord of length
µ in s.

Let Si be the set of all ej such that the angle between di and ej does not exceed α.
Suppose that, for all 1 ≤ k ≤ 4, the union of any k of the sets Si contains at least k
elements. Then, by Hall’s representatives theorem, we can select a single representative
e′i from each Si in such a way that all four representatives are distinct, and pair up the
endpoints of each di with the endpoints of its corresponding e′i in such a way that the
distance between the two vertices in each pair is at most µ.

Let us then look at the possible values of k and the bounds on µ that they impose.

k = 4: Let P be the center of the spherical cap cut off from s by the plane A1A2A3A4.
(That is, P lies on s, PA1 = PA2 = PA3 = PA4, and A1A2A3A4 separates O and P .)

We need to ensure that the union of the eight spherical caps with centers Ai and radii α
contains all vertices of λ, i.e., that it covers s. This is true just if µ ≥ PA1; denote the
length of PA1 by µ4.

k = 3: Let Q be a point on the shorter great-circle arc ⌣ A1A3 of s such that A2Q =
A4Q = µ and A1Q ≤ QA3. Choose R and S similarly on the shorter great-circle arcs
⌣ A1A6 and ⌣ A1A8.

Without loss of generality, we need to ensure that the union of the six spherical caps
with centers A2, A4, A5, A3, A6, and A8 and radii α contains at least six vertices of
λ. Equivalently, we need to ensure that the complement of this union to s contains at
most two vertices of λ. This complement consists of two connected components which are
symmetric with respect to O; therefore, it is necessary and sufficient to ensure that each
component contains at most one vertex of λ. Since each component is contained within
the equilateral spherical triangle QRS but contains points arbitrarily close to Q, R, and
S, it is necessary and sufficient to have QR ≤ 1 – or, equivalently, µ ≥ µ3, where µ3 is
the value of µ for which equality is attained. It is easy to see that µ3 > µ4.

For k = 2 and k = 1, let Ti be the set of all dj such that the angle between ei and dj does
not exceed α.

k = 2: Without loss of generality, suppose that S1 ∪ S2 does not contain e1, e2, and e3.
Then T1 ∪ T2 ∪ T3 does not contain d1 and d2. From the case k = 3 we know that this is
avoided just if µ ≥ µ3.
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k = 1: Suppose that, without loss of generality, S1 does not contain any ei. Then the
union of all Ti does not contain d1. From the case k = 4 we know that this is avoided
just if µ ≥ µ4.

Thus µ ≥ µ3 always works. In order to see that no µ < µ3 works, let λ be the cube with
center O and edge QR as in the case k = 3. At most one of the vertices Q and R of λ
is paired with A1; whatever vertex of κ we pair with the other one, the distance between
them will be at least µ3. Therefore, the shortest distance µ that satisfies the conditions

of the problem is µ3 =
√

9−2
√
2−

√
5

6
. Since 4/5 < µ3 < 13/16, the answer to the first part

of the problem is negative and the answer to the second part of the problem is positive.
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