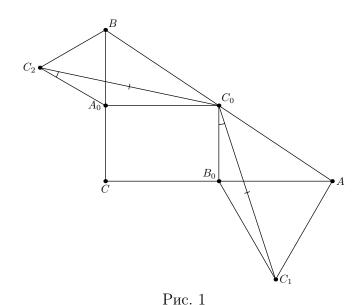
Шестнадцатая олимпиада по геометрии им. И.Ф.Шарыгина Заочный тур. Решения

1. (Д.Швецов, 8) В треугольнике $ABC \angle C = 90^\circ$, A_0 , B_0 , C_0 — середины сторон BC, CA, AB соответственно. На отрезках AB_0 и BA_0 во внешнюю сторону построены как на основаниях равносторонние треугольники с вершинами C_1 , C_2 . Найдите угол $C_0C_1C_2$.

Ответ. 30°.

Решение. Так как $C_0B_0=A_0B=A_0C_2$, $C_0A_0=AB_0=B_0C_1$ и $\angle C_0A_0C_2=\angle C_0B_0C_1=150^\circ$, то треугольники $C_0A_0C_2$ и $C_1B_0C_0$ равны (рис.1). Поэтому $C_0C_1=C_0C_2$ и $\angle C_1C_0C_2=\angle A_0C_0B_0+\angle B_0C_0C_1+\angle A_0C_0C_2=120^\circ$. Следовательно, $\angle C_0C_1C_2=\angle C_0C_2C_1=30^\circ$.



2. (А.Акопян, 8) Четырехугольник ABCD вписанный. Окружность, проходящая через точки A и B, пересекает диагонали AC и BD в точках E и F соответственно. Пусть прямые AF и BC пересекаются в точке P, а прямые BE и AD в точке Q. Докажите, что PQ параллельна CD.

Решение. Из вписанности четырехугольников ABCD и ABEF получаем, что $\angle CBD = \angle CAD$ и $\angle EBF = \angle EAF$. Значит, $\angle PBQ = \angle PAQ$, т.е. четырехугольник ABPQ тоже вписанный (рис.2). Следовательно, прямые CD и PQ параллельны, так как обе они антипараллельны AB относительно прямых AP и BQ.

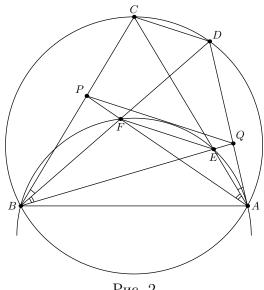
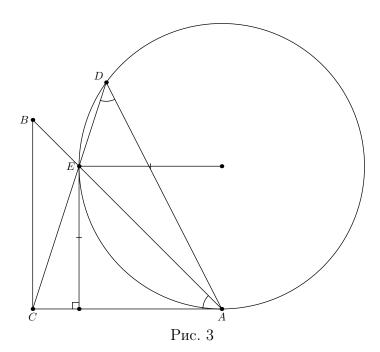


Рис. 2

3. (Н.Москвитин, 8) Дан прямоугольный треугольник ABC с прямым углом C, вне треугольника взята точка D, так что $\angle ADC = \angle BAC$ и отрезок CD пересекает гипотенузу AB в точке E. Известно, что расстояние от точки E до катета AC равно радиусу описанной окружности треугольника *ADE*. Найдите углы треугольника ABC.

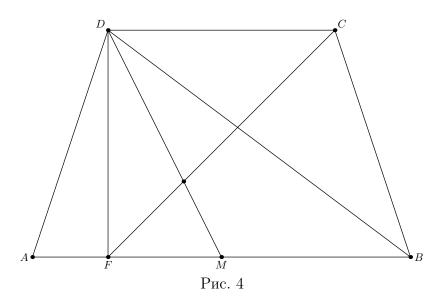
Ответ. $\angle A = \angle B = 45^{\circ}$.

 ${f Pemerue.}$ По теореме синусов радиус описанной окружности треугольника ADE равен $AE/2\sin \angle ADE$. С другой стороны, расстояние от E до AC равно $AE\sin \angle BAC$. Тогда из условия задачи следует, что $2\sin^2 \angle A = 1$, т.е. $\angle A = 45^\circ$ (рис.3).



4. (D.Burek, Польша, 8) Дана равнобокая трапеция ABCD с основаниями AB и CD. Докажите, что точка пересечения медиан треугольника ABD лежит на прямой CF, где F — проекция D на AB.

Решение. Пусть M — середина AB. Тогда FM = CD/2, следовательно, диагонали трапеции CDFM делят друг друга в отношении 2:1, считая от точек C,D (рис.4). Значит, точка пересечения этих диагоналей совпадает с центром тяжести треугольника ABD.



5. (А.Куликова, Д.Прокопенко, 8–9) В треугольнике ABC проведены высоты BB_1 , CC_1 и диаметр AD описанной окружности. Прямые BB_1 и DC_1 пересекаются в точке E, а прямые CC_1 и DB_1 — в точке F. Докажите, что $\angle CAE = \angle BAF$.

Решение. Пусть H — ортоцентр треугольника ABC. Тогда прямые AH и AD являются изогоналями относительно угла B_1AC_1 . По теореме об изогоналях прямые AE и AF также являются изогоналями.

6. (А.Акопян, 8–9) Окружности ω_1 и ω_2 пересекаются в точках P и Q. Пусть O — точка пересечения общих внешних касательных к ω_1 и ω_2 . Прямая, проходящая через точку O, пересекает ω_1 и ω_2 в точках A и B соответственно, так, что эти две точки лежат по одну сторону от PQ. Прямая PA повторно пересекает ω_2 в точке C, а прямая QB повторно пересекает ω_1 в точке D. Докажите, что O, C и D лежат на одной прямой.

Решение. Из вписанности четырехугольников ADPQ и BPCQ следует, что $\angle DAC = \angle DQP = \angle BCP$, т.е. $AD \parallel BC$ (рис.6). Поскольку точка O является центром гомотетии данных окружностей и A при этой гомотетии переходит в B, то D переходит в C.

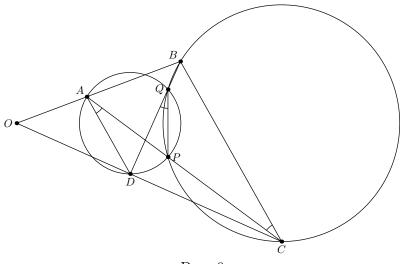


Рис. 6

7. (В.Стародуб, Украина, 8–9 Докажите, что точки пересечения средних линий треугольника ABC со сторонами треугольника, вершинами которого являются центры вневписанных окружностей, лежат на одной окружности.

Решение. Пусть A_b — проекция A на внешнюю биссектрису угла B, аналогично определим точки A_c , B_c , B_a , C_a , C_b . Известно. что A_bA_c — средняя линия треугольника ABC. Следовательно, надо доказать вписанность шестиугольника $A_bC_bB_cA_cC_aB_a$.

Пусть I_a , I_b , I_c — центры вневписанных окружностей треугольника ABC. Тогда четырехугольники $AA_bI_aA_c$ и BCB_cC_b — вписанные. Поэтому $\angle A_cA_bI_a = \angle A_cAI_a = (\pi - \angle B)/2 = \angle CBI_a = \angle C_bB_cI_a$, т.е. четырехугольник $A_bA_cB_cC_b$ вписанный (рис.7). При этом серединные перпендикуляры к A_cB_c и A_bC_b проходят через середины сторон AB, AC соответственно и параллельны биссектрисам углов C, B соответственно. Значит центром окружности $A_bA_cB_cC_b$ является центр вписанной окружности серединного треугольника. Отсюда получаем, что точки B_a , C_a лежат на этой же окружности.



Рис. 7

8. (П.Рябов, 8–9) Две окружности пересекаются в точках P и R. Через точку P проведены прямые l_1 , l_2 . Прямая l_1 вторично пересекает окружности в точках A_1 и B_1 . Касательные в этих точках к описанной окружности треугольника A_1RB_1 пересекаются в точке C_1 . Прямая C_1R пересекает A_1B_1 в точке D_1 . Аналогично определены точки A_2 , B_2 , C_2 , D_2 . Докажите, что окружности D_1D_2P и C_1C_2R касаются.

Решение. Докажем, что они касаются в точке R. Заметим, что точки D_1, D_2, P , R лежат на одной окружности, так как D_1R и D_2R — соответствующие линии в подобных треугольниках A_1RB_1 и A_2RB_2 . Пусть касательные к окружностям в точках A_1 и A_2 пересекаются в точке X, а в B_1 и B_2 в точке Y. Заметим, что $\angle A_1XA_2 = \angle A_1RA_2$ (углу поворота), следовательно точки A_1, X, R, A_2 лежат на одной окружности. Аналогично точки X, R, C_1, C_2, Y лежат на одной окружности. Чтобы доказать, что окружности касаются достаточно доказать, что $D_1D_2 \parallel C_1C_2$. Имеем $\angle D_1D_2R = \angle D_1PR = \angle RXC_1 = \angle RC_2C_1$, следовательно, прямые параллельны, ч.т.д.

9. (Г.Филипповский, Украина, 8–9) Постройте треугольник ABC по вершине A, центру описанной окружности O и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах AB и AC равные отрезки от вершины A.

Решение. Из условия следует. что прямая Эйлера параллельна внешней биссектрисе угла A. Так как AO и AH — изогонали, то AO = AH. Значит, мы можем найти H как вторую точку пересечения окружности с центром A и радиусом AO с прямой Эйлера. Пусть теперь AH вторично пересекает описанную окружность в точке D. Тогда B и C — точки пересечения серединного перпендикуляра к отрезку HD с описанной окружностью.

Примечание. Так как в любом треугольнике AH равно удвоенному расстоянию от O до BC, а в нашем треугольнике AH равно радиусу описанной окружности, угол A равен 60 или 120 градусам. Легко видеть, что при $\angle A = 60^\circ$ прямая Эйлера параллельна внешней биссектрисе угла A, а при $\angle A = 120^\circ$ — внутренней. Таким образом, в данном треугольнике $\angle A = 60^\circ$.

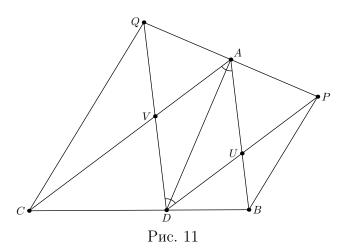
10. (А. Иванищук, 8–9) Дана замкнутая ломаная $A_1A_2...A_n$ и окружность ω , которая касается каждой из прямых $A_1A_2, A_2A_3, ..., A_nA_1$. Звено ломаной называется хорошим, если оно касается окружности, и плохим в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество.

Решение. Пусть O — центр окружности, а T_i — точка ее касания с прямой A_iA_{i+1} (считаем, что A_{n+1} совпадает с A_1 .) Назовем треугольник ABC положительно ори-ентированным если вершины A, B, C идут против часовой стрелки и отрицательно ориентированным в противном случае.

Заметим, что треугольники OA_iT_i и $OA_{i+1}T_i$ ориентированы одинаково тогда и только тогда, когда звено A_iA_{i+1} плохое. С другой стороны, треугольники $OA_{i+1}T_i$ и $OA_{i+1}T_{i+1}$ всегда ориентированы по-разному. Следовательно, звено A_iA_{i+1} плохое тогда и только тогда, когда треугольники OA_iT_i и $OA_{i+1}T_{i+1}$ ориентированы по-разному. Значит, число плохих звеньев равно числу перемен ориентации в последовательности треугольников $OA_1T_1, OA_2T_2, \ldots, OA_nT_n$, которое, очевидно, четно.

11. (А.Уткин, 8–9) В треугольнике $ABC \angle A = 60^{\circ}$, AD — биссектриса. Построен равносторонний треугольник PDQ с высотой DA. Прямые PB и QC пересекаются в точке K. Докажите, что AK — симедиана треугольника ABC.

Решение. Докажем, что точки P и B лежат по разные стороны от AD. Действительно, в противном случае пусть U — точка пересечения AD и PD, а V — точка пересечения AC и QD. Тогда AUDV — ромб, поскольку $\angle UAD = \angle VAD = \angle UDA = \angle VDA = 30^\circ$. Применяя теорему Паппа к точкам (P,A,Q) и (B,D,C), получим, что $PB \parallel QC$, что противоречит условию задачи (рис.11).



Теперь заметим, что по теореме об изогоналях точки пересечения прямых PB и QC, PC и QB изогональны относительно угла A. Но, как показано выше, прямые PC и

QB параллельны, а поскольку AP = AQ, то они параллельны медиане треугольника ABC, откуда и получаем утверждение задачи.

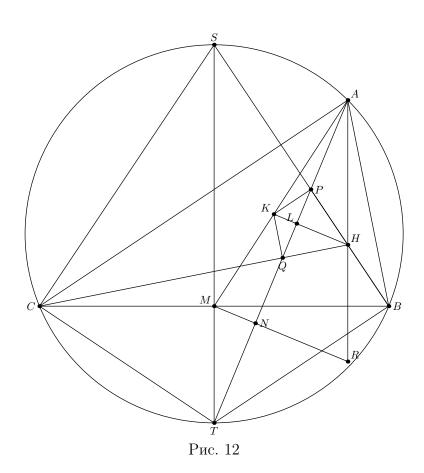
12. (A.Mudgal, P.Srivastava, Индия, 8–10) В неравнобедренном треугольнике $ABC\ H$ — ортоцентр. Биссектриса угла BHC пересекает прямые AB и AC в точках P и Q соответственно. Перпендикуляры, восставленные к AB и AC из P и Q, пересекаются в точке K. Докажите, что прямая KH делит отрезок BC пополам.

Решение. Заметим, что A— ортоцентр треугольника BHC. Поэтому можно, поменяв роли точек A и H, переформулировать задачу.

Пусть H — ортоцентр неравнобедренного треугольника ABC. Биссектриса угла A пересекает высоты BH, CH в точках P и Q соответственно. Перпендикуляры, восставленные к BH и CH из P и Q, пересекаются в точке K. Докажите, что AK делит пополам отрезок BC.

Пусть M — середина хорды BC, а S и T — середины дуг BAC и BC окружности ABC. Тогда T лежит на прямой APQ и надо доказать, что $A,\,K,\,M$ лежат на одной прямой.

Пусть L — точка пересечения KH и PQ, N — проекция M на прямую APQT, а R — точка пересечения AH и MN (рис.12).



Легко видеть, что HPKQ и SBTC — подобные дельтоиды, а L, M — точки пересечения их диагоналей. Поэтому HL: LK = SM: MT. Так как $AS \parallel MN$, получаем.

- что SM:MT=AN:NT. Наконец, из параллельности прямых AHR и SMT следует, что AN:NT=RN:NM. Тогда, поскольку прямые HLK и RNM параллельны и HL:LK=RN:NM, то $A,\,K,\,M$ лежат на одной прямой.
- 13. (А.Уткин, 9–11) В треугольнике $ABC\ I$ центр вписанной окружности, вневписанная окружность с центром I_A касается стороны BC в точке A'. Через I проведена прямая $l \perp BI$. Оказалось, что l пересекает I_AA' в точке K, лежащей на средней линии, параллельной BC. Докажите, что $\angle B \leq 60^\circ$.

Решение. Пусть AH_A — высота треугольника, M — ее середина, а N — точка пересечения AH_A с BI. Тогда точки A', I, M — проекции K на прямые BC, BI, AH_A соответственно — лежат на одной прямой, следовательно, четырехугольник $BKNH_A$ вписанный и $\angle BKH_A = \angle BNH_A = 90^\circ - \angle B/2$.

Так как середина M_C стороны AB равноудалена от B и H_A , а $M_CK \parallel BH_A$, то $\angle BKH_A < \angle BM_CH_A = 180^\circ - 2\angle B$, откуда и следует искомое неравенство.

14. (Ф.Ивлев, 9–11) Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.

Решение. Пусть ω и ω_A — вписанная и вневписанная, противоположная вершине A окружности. Обозначим через t их общую внутреннюю касательную, отличную от прямой BC.

Рассмотрим инверсию с центром A, меняющую местами ω и ω_A . Она переводит прямую t в окружность s, проходящую через A, касающуюся ω внутренним образом, а ω_A внешним и касающуюся в A прямой, параллельной t.

Поскольку прямые BC и t симметричны относительно внутренней биссектрисы угла A, касательные в точке A к s и описанной около треугольника ABC окружности совпадают. Следовательно, s — окружность из условия задачи.

15. (А.Акопян, 9–11) Окружность, проходящая через вершины B и D четырехугольника ABCD, пересекает его стороны AB, BC, CD и DA в точках K, L, M и N соответственно. Окружность, проходящая через точки K и M, пересекает прямую AC в точках P и Q. Докажите, что точки L, N, P и Q лежат на одной окружности.

Решение. Применив к шестиугольнику BKMDNL теорему Паскаля, получаем, что прямые KM и LN пересекаются в точке X, лежащей на прямой AC (рис.15). Тогда $KX \cdot XM = LX \cdot XN = PX \cdot XQ$, ч.т.д.

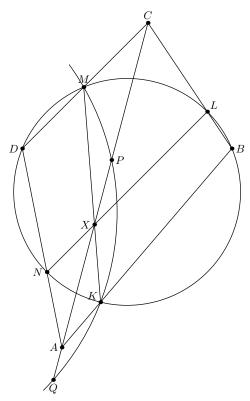


Рис. 15

16. (П.Рябов, 9–11) В треугольнике ABC чевианы AP и AQ симметричны относительно биссектрисы. Точки X, Y — проекции B на AP и AQ соответственно, а точки N и M — проекции C на AP и AQ соответственно. Докажите, что XM и NY пересекаются на BC.

Решение. Заметим, что точки M, N, X и Y лежат на одной окружности Ω . Действительно, из подобия треугольников ABX и ACM следует, что AX:AM=AB:AC. Аналогично, AN:AY=AC:AB. Значит, $AX\cdot AN=AY\cdot AM$. При этом, поскольку серединные перпендикуляры к XN и YM проходят через середину T стороны BC, то T — центр Ω .

Пусть AH — высота треугольника, а Z — точка пересечения прямых MN и XY. Тогда Z лежит на AH, потому что AH, MN и XY — радикальные оси окружностей Ω , ABXY и ACMN (рис.16).

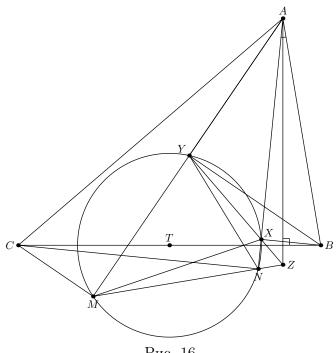


Рис. 16

Наконец, пусть MX и NY пересекаются в точке W. Тогда W — полюс прямой AZотносительно окружности XMYN, следовательно, $AZ \perp TW$, т.е. W лежит на BC.

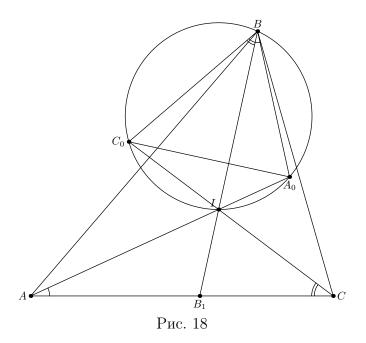
Примечание. Когда задания олимпиады были опубликованы, выяснилось, что задача была независимо предложена на Балканской олимпиаде.

17. (А.Казаков, 10–11) Хорды A_1A_2 и B_1B_2 пересекаются в точке D. Прямая A_1B_1 пересекает серединный перпендикуляр к отрезку DD', где точка D' инверсна к D, в точке C. Докажите, что $CD \parallel A_2B_2$.

Решение. Так как C лежит на радикальной оси данной окружности и точки D, $CD^2 = CB_1 \cdot CA_1$, следовательно, $\angle CDB_1 = \angle DA_1C = \angle A_2B_2D$.

18. (Д.Швецов, Ю.Зайцева, 10–11) Биссектрисы AA_1, BB_1, CC_1 треугольника ABC пересекаются в точке I. Серединный перпендикуляр к отрезку BB_1 пересекает прямые AA_1, CC_1 в точках A_0, C_0 . Докажите, что описанные окружности треугольников A_0IC_0 и ABC касаются.

Первое решение. Серединный перпендикуляр к BB_1 и биссектриса угла A пересекаются на описанной окружности треугольника ABB_1 , следовательно, $\angle IBA_0 =$ $\angle IAB$. Аналогично $\angle IBC_0 = \angle ICB$. Тогда $\angle A_0BC_0 = \angle A_1IC$, т.е. точки I, A_0, C_0, I B лежат на одной окружности (рис.18). Касательная к этой окружности в точке Bобразует с прямой BB_1 угол, равный $\angle BC_0A_0 + \angle A_0BI = \angle IAC + \angle AIB_1 = \angle BB_1C$. Такой же угол образует BB_1 с касательной к окружности ABC. Значит, обе окружности касаются в точке B.



Второе решение. Пусть AA_1 , BB_1 и CC_1 повторно пересекают описанную окружность треугольника ABC в точках A', B', C' соответственно. Обозначим через M и N середины отрезков BB_1 и BI соответственно. Заметим, что по теореме о трезубце A'C' — серединный перпендикуляр к отрезку BI.

Для решения задачи достаточно доказать подобие четырехугольников A_0IC_0B и A'BC'B'. Действительно, так как четырехугольник A'BC'B' вписанный, окружность A_0IC_0 проходит через B. Также из параллельности прямых A_0C_0 и A'C' получаем, что окружности A_0IC_0 и A'IC' касаются в точке I. Симметрия относительно A'C' сохраняет первую окружность, проходящую через B и I, а вторую переводит в описанную около треугольника ABC. Следовательно, окружности A_0IC_0 и ABC касаются в точке B.

Чтобы доказать подобие, заметим, что треугольники A_0IC_0 и A'BC' подобны, а отрезки IM и BN являются их соответственными высотами. По.тому достаточно доказать равенство BM:BI=B'N:B'B или $BB_1:BI=(B'I+B'B):B'B$. Вычитая из обеих частей по единице, получаем $IB_1:BI=B'I:B'B$. Но $IB_1:BI=AB_1:AB=B'C:B'B=B'I:B'B$, ч.т.д.

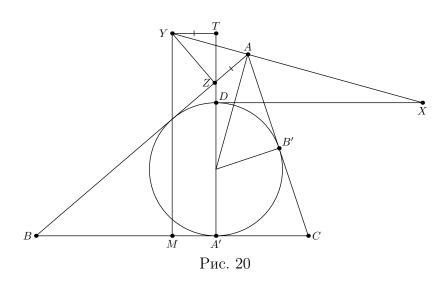
19. (А.Заславский, 10–11) В четырехугольнике ABCD $AB \perp CD$ и $AD \perp BC$. Докажите, что существует точка, расстояния от которой до прямых, содержащих стороны четырехугольника пропорциональны этим сторонам.

Решение. Из условия следует, что высоты AA' и CC' треугольника ABC пересекаются в точке D. Отразим медиану треугольника ABC, проведенную из вершины B, относительно его биссектрисы из той же вершины и найдем точку пересечения L полученной прямой с A'C'. Так как точки A, C, A', C' лежат на окружности с диаметром AC, $\angle LA'C = \angle DAC = \pi/2 - \angle BCA$. Поэтому отношение расстояний от L до AB и CD равно $\sin \angle LA'B/\sin \angle LA'C = \operatorname{tg} \angle BCA$. Но $AB = 2R\sin \angle BCA$, $CD = 2R\cos \angle BCA$, где R — радиус описанной окружности треугольника ABC. Следовательно, расстояния от L до сторон AB и CD пропорциональны этим сторонам. Аналогично получаем искомую пропорциональность для сторон AD и BC.

Кроме того, так как L лежит на прямой, симметричной медиане треугольника относительно его биссектрисы, расстояния от L до AB и BC также пропорциональны этим сторонам, т.е. L — искомая точка.

20. (М.Дидин, 10–11) К вписанной окружности треугольника ABC проведена касательная, параллельная BC. Она пересекает внешнюю биссектрису угла A в точке X. Точка Y — середина дуги BAC описанной окружности. Докажите, что угол XIY прямой.

Первое решение. Обозначим точку касания вписанной окружности с прямой, параллельной BC через D, а со сторонами BC, CA, AB через A', B', C' соответственно. Пусть M — середина BC. Будем считать, что AB > AC, и обозначим через Z и T проекции Y на AB и IA' соответственно. Тогда треугольники AYZ и IAB' подобны, потому что $\angle AYZ = \angle IAB' = \angle A/2$ и $\angle AZY = \angle IB'A = 90^\circ$. Значит, AY:AZ=IA:IB'. С другой стороны, по лемме Архимеда Z делит пополам ломаную ABC, т.е. AZ=(c-b)/2=A'M=YT. Кроме того, IB'=ID. Следовательно, AY:YT=AI:ID (рис.20).



Поскольку $AY \perp AI$ и $YT \perp ID$, существует поворотная гомотетия с центром A и углом 90°, переводящая Y в I, а T в D, тогда прямая AI перейдет в AX, а TI в DX. Поэтому I перейдет в X, а прямая YI в IX, ч.т.д.

Второе решение. Поскольку полюсом прямой DX относительно вписанной окружности является точка D, а прямой AX — середина A_0 отрезка B'C', надо доказать, что $DA_0 \parallel IY$. Заметим, что треугольник A'B'C' гомотетичен треугольнику $I_aI_bI_c$, образованному центрами вневписанной окружности, причем точке Y при этой гомотетии соответствует A_0 , а точке I ортоцентр треугольника A'B'C'. Но точка D, диаметрально противоположная A', симметрична ортоцентру относительно A_0 , ч.т.д.

21. (А.Заславский, 10-11) Диагонали вписанно-описанного четырехугольника ABCD пересекаются в точке L. Даны три отрезка, равные AL, BL, CL. Восстановите четырехугольник с помощью циркуля и линейки.

Решение. Так как ABCD — вписанный, то $AL \cdot LC = BL \cdot LD$, т.е. мы знаем длину отрезка DL. Пусть |AL| = a, |BL| = b, |CL| = c, |DL| = d.

Пусть окружность, вписанная в ABCD, касается сторон AB, BC, CD, DA в точках P, Q, R, S соответственно. Известно, что в описанном четырехугольнике прямые PR и QS проходят через L. Кроме того, поскольку ABCD — вписанный, PR и QS являются биссектрисами углов между AC и BD.

Пусть AS = AP = a', BP = BQ = b', CQ = CR = c', DR = DS = d'. По теореме о биссектрисе AL : LB = AP : PB, т.е. a' : a = b' : b. Аналогично получаем, что a' : a = b' : b = c' : c = d' : d. Обозначим это отношение через x. Then AB = (a + b)x и аналогичные выражения получаем для BC, CD и DA.

По теореме Птолемея $AB \cdot CD + BC \cdot DA = AC \cdot BD$, откуда находим

$$x = \sqrt{(a+c)(b+d)/((a+b)(c+d) + (b+c)(d+a))}.$$

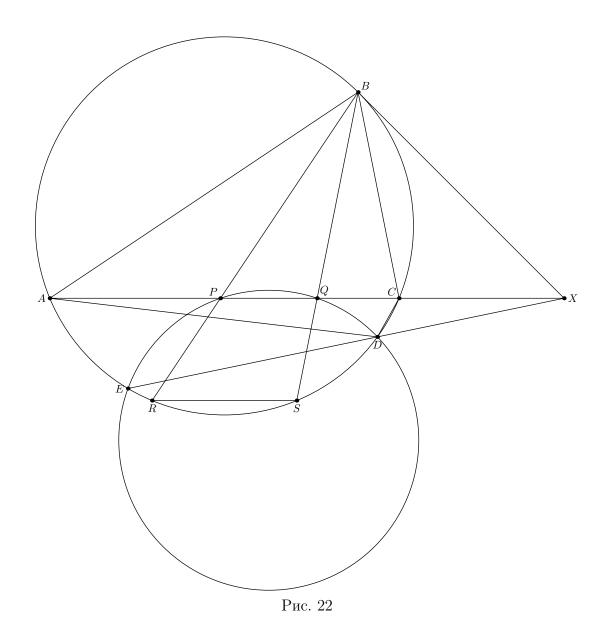
Используя это значение x, мы можем построить циркулем и линейкой отрезки AB, BC, CD, DA, а значит и четырехугольник ABCD.

Примечание. Можно также выразив длины отрезков LP, LQ, LR, LS через a, b, c, d и угол $\varphi = \angle ALB$, найти $\cos \varphi$ из равенства $PL \cdot LR = QL \cdot LS$.

22. (A.Khurmi, K.V.Sudharshan, Индия, 10–11) Дан вписанный в окружность Ω четырехугольник ABCD. На диагонали AC берутся пары точек P, Q таких, что лучи BP и BQ симметричны относительно биссектрисы угла B. Найдите геометрическое место центров окружностей PDQ.

Решение. Пусть прямые BP и BQ повторно пересекают окружность ABCD в точках R и S соответственно. Так как $\angle ABP = \angle CBQ$, дуги AR и CS равны, т.е. $AC \parallel RS$. Поэтому гомотетия с центром B переводит треугольник BPQ в BRS, а окружности BPQ и BRS = ABCD касаются в точке B. Пусть их общая касательная пересекает AC в точке X, а прямая DX повторно пересекает окружность ABCD в точке E. Заметим, что X и E не зависят от P и Q.

Поскольку BX — радикальная ось окружностей ABCD и BPQ, а AC — радикальная ось окружностей BPQ и DPQ, то прямая DEX — радикальная ось окружностей ABCD и DPQ. Следовательно, E лежит на окружности DPQ при любых положениях точек P,Q (рис.22). Таким образом искомое ГМТ состоит из точек O серединного перпендикуляра к DE, для которых окружность с центром O, проходящая через D и E, пересекает прямую AC. Точки, не удовлетворяющие этому условию, образуют некоторый интервал.



23. (Н.Белухов, Болгария, 10–11) Назовем *почти выпуклым* несамопересекающийся многоугольник, у которого ровно один внутренний угол больше 180°.

На плоскости даны 1000000 точек, никакие три из которых не лежат на одной прямой. Может ли оказаться, что существует ровно десять различных почти выпуклых 1000000-угольников с вершинами в этих точках?

Ответ. Нет.

Решение. Пусть P_1, P_2, \ldots, P_n — данные точки (n = 1000000), а $H = H_1H_2 \ldots H_k$ — их выпуклая оболочка. Будем называть точки H_1, H_2, \ldots, H_k внешними, а остальные n-k точек внутренними.

Пусть Q_1, Q_2, \ldots, Q_n такая перестановка точек P_1, P_2, \ldots, P_n , что $Q = Q_1Q_2\ldots Q_n$ почти выпуклый многоугольник. Из сторон многоугольника H ровно одна, назовем ее s,не является стороной Q.

Пусть R — вершина Q, для которой внутренний угол Q больше 180°. Тогда R —

внутренняя точка, а все остальные внутренние точки лежат внутри треугольника, с вершиной R и противоположной стороной s.

Если внутренняя точка единственна, она должна совпадать с R. Тогда любую сторону H в качестве s и мы получим n-1>10 способов построить многоугольник Q — противоречие.

Если есть ровно две внутренних точки — R_1 и R_2 , то в качестве R можно взять любую из них. Пусть, например, $R \equiv R_1$. Тогда s — та сторона H, которую пересекает луч R_1R_2 . Если это сторона H_uH_{u+1} , то Q совпадает с одним из двух многоугольников $H_1H_2\ldots H_uR_1R_2H_{u+1}\ldots H_k$ или $H_1H_2\ldots H_uR_2R_1H_{u+1}\ldots H_k$. Таким образом, в этом случае для Q есть лишь четыре варианта.

Наконец, рассмотрим случай, когда внутренних точек хотя бы три. Пусть $G = G_1G_2\dots G_m$ — их выпуклая оболочка.

Назовем вершину G_i многоугольника G перспективной, если лучи G_iG_{i-1} и G_iG_{i+1} пересекают одну и ту же сторону H. (Считаем, что $G_0 \equiv G_m$ и $G_{m+1} \equiv G_1$.) Любая вершина G_i , которую можно выбрать в качестве R, должна быть перспективной. Однако, не каждая перспективная G_i может быть взята как R.

Покажем, что у G не больше трех перспективных вершин. Действительно, предположим, что таких вершин не меньше четырех. Обозначим какие-то четыре из них через A, B, C, D так, что ABCD — выпуклый четырехугольник с $\angle A + \angle B \ge 180^\circ$. Тогда луч BC лежит внутри угла, образованного лучами AB и AD. Так как A — перспективная, все три луча пересекают одну и ту же сторону H.

Но B тоже перспективная, поэтому лучи BA и BC также пересекают одну сторону H. Поскольку лучи AB и BA не могут пересекать одну сторону H, получено противоречие.

Пусть теперь G_l — перспективная вершина G, а лучи G_lG_{l-1} и G_lG_{l+1} пересекают сторону H_uH_{u+1} многоугольника H.

Рассмотрим луч r с вершиной G_l . Будем вращать r вокруг G_l внутри угла $G_{l-1}G_lG_{l+1}$ от луча G_lG_{l-1} до G_lG_{l+1} . Пусть $J_1 \equiv G_{l-1}, J_2, \ldots, J_{n-k-1} \equiv G_{l+1}$ — отличные от G_l внутренние точки, через которые проходит r при этом вращении. Обозначим также $J_0 \equiv H_u$ и $J_{n-k} \equiv H_{u+1}$. Тогда, для некоторого $0 \le v \le n-k-1$ получаем, что

$$Q \equiv H_1 H_2 \dots H_{u-1} J_0 J_1 \dots J_v G_l J_{v+1} J_{v+2} \dots J_{n-k} H_{u+2} H_{u+3} \dots H_k.$$

Рассмотрим несамопересекающийся многоугольник

$$Q' = H_1 H_2 \dots H_{u-1} J_0 J_1 \dots J_{n-k} H_{u+2} H_{u+3} \dots H_k.$$

Так как Q' невыпуклый, у него есть угол, больший 180° . Поскольку его внутренние углы в вершинах $H_1,\ H_2,\ \dots,\ H_u\equiv J_0,\ H_{u+1}\equiv J_{n-k},\ \dots,\ H_k$ меньше 180° , то для некоторого $1\leq w\leq n-k-1$ угол Q' в вершине J_w больше 180° . Тогда v=w-1 или v=w. (Иначе у Q будет два угла, больших 180° , в вершинах G_l и J_w .) Значит для каждой перспективной вершины G_l многоугольника G есть не больше двух вариантов Q, а общее количество почти выпуклых многоугольников не превосходит $3\cdot 2=6<10$.

24. (И.Богданов, 11) Пусть I — центр сферы, вписанной в тетраэдр ABCD, а J — центр сферы, касающейся грани BCD и плоскостей остальных граней (вне самих граней). Отрезок IJ пересекает сферу, описанную около тетраэдра, в точке K. Что больше: IK или JK?

Ответ. IK.

Решение. Рассмотрим плоскость, проходящую через прямую AIJ и перпендикулярную плоскости BCD. Она пересекает обе сферы по большим окружностям. Пусть касательные из A к этим окружностям пересекают плоскость BCD в точках X и Y. Тогда I и J — центры вписанной и вневписанной окружностей треугольника AXY, значит, середина отрезка IJ лежит на дуге XY описанной около этого треугольника окружности. Но точки X, Y лежат внутри описанной около тетраэдра сферы, следовательно, дуга XY также лежит внутри нее и IK > IJ/2 > JK.