
XVI GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The correspondence round. Solutions

1. (D.Shvetsov, 8) Let ABC be a triangle with ∠C = 90◦, and A0, B0, C0 be the midpoints of
sides BC, CA, AB respectively. Two regular triangles AB0C1 and BA0C2 are constructed
outside ABC. Find the angle C0C1C2.

Answer. 30◦.

Solution. Since C0B0 = A0B = A0C2, C0A0 = AB0 = B0C1 and ∠C0A0C2 = ∠C0B0C1 =
150◦, we obtain that triangles C0A0C2 and C1B0C0 are congruent (fig.1). Thus C0C1 =
C0C2 and ∠C1C0C2 = ∠A0C0B0 + ∠B0C0C1 + ∠A0C0C2 = 120◦. Therefore ∠C0C1C2 =
∠C0C2C1 = 30◦.
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2. (A.Akopyan, 8) Let ABCD be a cyclic quadrilateral. A circle passing through A and B
meets AC and BD at points E and F respectively. The lines AF and BC meet at point
P , and the lines BE and AD meet at point Q. Prove that PQ is parallel to CD.

Solution. Since quadrilaterals ABCD and ABEF are cyclic, we have ∠CBD = ∠CAD
and ∠EBF = ∠EAF . Thus ∠PBQ = ∠PAQ, i.e. ABPQ is also cyclic (fig.2). Therefore
CD and PQ are parallel because both lines are antiparallel to AB with respect to lines
AP and BQ.
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3. (N.Moskvitin, 8) Let ABC be a triangle with ∠C = 90◦, and D be a point outside ABC,
such that ∠ADC = ∠BAC. The segments CD and AB meet at point E. It is known
that the distance from E to AC is equal to the circumradius of triangle ADE. Find the
angles of triangle ABC.

Answer. ∠A = ∠B = 45◦.

Solution. By the sine law the circumradius of triangle ADE equals to AE/2 sin∠ADE.
On the other hand the distance from E to AC equals to AE sin∠BAC. Then by the
assumption we obtain that 2 sin2 ∠A = 1, i.e. ∠A = 45◦ (fig.3).
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4. (D.Burek, 8) Let ABCD be an isosceles trapezoid with bases AB and CD. Prove that
the centroid of triangle ABD lies on line CF , where F is the projection of D to AB.

Solution. Let M be the midpoint of AB. Then FM = CD/2, therefore the diagonals
of trapezoid CDFM divide each other in ratio 2 : 1 from points C, D (fig.4). Hence the
common point of diagonals coincides with the centroid of ABD.
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5. (A.Kulikova, D.Prokopenko, 8–9) Let BB1, CC1 be the altitudes of triangle ABC, and
AD be the diameter of its circumcircle. The lines BB1 and DC1 meet at point E, the
lines CC1 and DB1 meet at point F . Prove that ∠CAE = ∠BAF .

Solution. Let H be the orthocenter of ABC. Then rays AH and AD are isogonal with
respect to angle B1AC1. By the isogonal theorem AE and AF are also isogonal.

6. (A.Akopyan, 8–9) Circles ω1 and ω2 meet at points P and Q. Let O be the common point
of common external tangents to ω1 and ω2. A line passing trough O meets ω1 and ω2

respectively at points A and B located on the same side with respect to the line PQ. The
line PA meets ω2 for the second time at C, and the line QB meets ω1 for the second time
at D. Prove that O, C, and D are collinear.

Solution. Since quadrilaterals ADPQ and BPCQ are cyclic, we obtain that ∠DAC =
∠DQP = ∠BCP , i.e. AD ∥ BC (fig.6). Since O is the homothety center of the given
circles and this homothety maps A to B, it maps D to C.
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7. (V.Starodub, 8–9) Prove that the medial lines of triangle ABC meet the sides of triangle
formed by its excenters at six concyclic points.
Решение. Let Ab be the projection of A onto the exterior angle bisector through B, and
define Ac, Bc, Ba, Ca, and Cb similarly. It is well-known that AbAc is the medial line of
triangle ABC opposite to A. Thus we want to show that AbCbBcAcCaBa is cyclic.
Let Ia, Ib, and Ic be the excenters opposite to A, B, and C. Then AAbIaAc and BCBcCb

are both cyclic. Hence ∠AcAbIa = ∠AcAIa = (π − ∠B)/2 = ∠CBIa = ∠CbBcIa i.e
quadrilateral AbAcBcCb is cyclic (fig.7). But the perpendicular bisectors to AcBc and
AbCb pass through the midpoints of AB, AC and are parallel to the bisectors of angles
C, B respectively. Thus the center of circle AbAcBcCb coincides with the incenter of the
medial triangle. This yields that Ba, Ca lie on the same circle.
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Fig. 7

8. (P.Ryabov, 8–9) Two circles meeting at points P and R are given. Let l1, l2 be two lines
passing through P . The line l1 meets the circles for the second time at points A1 and B1.
The tangents at these points to the circumcircle of triangle A1RB1 meet at point C1. The
line C1R meets A1B1 at point D1. Points A2, B2, C2, D2 are defined similarly. Prove that
the circles D1D2P and C1C2R touch.
Solution. Let us prove that these circles touch at R. Note that D1, D2, P , and R are
concyclic because D1R and D2R are corresponding lines in similar triangles A1RB1 and
A2RB2. Let the tangents to the circles at A1 and A2 meet at point X, and the tangents
at B1 and B2 meet at Y . Note that ∠A1XA2 = ∠A1RA2 (the rotation angle), therefore
A1, X, R, and A2 are concyclic. Similarly X, R, C1, C2, and Y are concyclic. Now we
have to prove that D1D2 ∥ C1C2. We have ∠D1D2R = ∠D1PR = ∠RXC1 = ∠RC2C1,
therefore these lines are parallel, q.e.d.

9. (G.Filippovsky, 8–9) The vertex A, the circumcenter O, and the Euler line l of triangle
ABC are given. It is known that l meets AB and AC at two points equidistant from A.
Restore the triangle.
Solution. We have that the Euler line is parallel to the exterior angle bisector at A. Since
AO and AH are isogonal rays with respect to ∠A, it follows that AO = AH. Thus we can
recover H as the second point where the circle with center A and radius AO meets the
Euler line. Furthermore let line AH meet the circumcircle (which we can recover because
we know its center O and one point on it, namely A) again at D. Then B and C are the
points where the perpendicular bisector of segment HD meets the circumcircle.
Remark. Since AH is twice the distance from O to BC in each triangle and AH equals
the circumradius in our triangle, we have that ∠A = 60◦ or ∠A = 120◦. It is not too
difficult to show that if ∠A = 60◦ then the Euler line is parallel to the exterior angle
bisector at A, and if ∠A = 120◦ then it is parallel to the interior angle bisector at A.
Thus in the problem we must necessarily have that ∠A = 60◦.

10. (A.Ivanischuk, 8–9) Given are a closed broken line A1A2 . . . An and a circle ω which
touches each of lines A1A2, A2A3, . . . , AnA1. Call the link good, if it touches ω, and bad
otherwise (i.e. if the extension of this link touches ω). Prove that the number of bad links
is even.
Solution. Let O be the center of the circle. For all i, let Ti be the tangency point
of the circle and line AiAi+1. (We define An+1 to be simply another name for point
A1.) We say that triangle ABC is positively oriented if vertices A, B, and C occur in
counterclockwise order along the boundary of the triangle, and we say that it is negatively
oriented otherwise.
Note that triangles OAiTi and OAi+1Ti are identically oriented if and only if segment
AiAi+1 is bad. On the other hand, triangles OAi+1Ti and OAi+1Ti+1 are always differently
oriented. Therefore, segment AiAi+1 is bad if and only if triangles OAiTi and OAi+1Ti+1

are oriented differently. Thus the number of bad segments equals the number of changes of
orientation in the cyclic sequence of triangles OA1T1, OA2T2, . . . , OAnTn, and so it must
be even. (Since orientation must change an even number of times in order to turn out the
same when we arrive back at the beginning of the sequence.)
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11. (A.Utkin, 8–9) Let ABC be a triangle with ∠A = 60◦, AD be its bisector, and PDQ be
a regular triangle with altitude DA. The lines PB and QC meet at point K. Prove that
AK is a symmedian of ABC.

Solution. Let us prove that P and B lie on the different sides with respect to AD. In
fact, in the other case let U be the common point of AD and PD, and V be the common
point of AC and QD. Then AUDV is a rhombus, because ∠UAD = ∠V AD = ∠UDA =
∠V DA = 30◦. Applying the Pappus theorem to points (P,A,Q) and (B,D,C) we obtain
that PB ∥ QC, which contradicts the assumption (fig.11).
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Now note that by the isogonal theorem PB and QC, PC and QB are isogonal with
respect to angle A. But as shown above PC and QB are parallel, and since AP = AQ,
they are parallel to the median of ABC. This yields the required assertion.

12. (A.Mudgal, P.Srivastava, 8–10) Let H be the orthocenter of a nonisosceles triangle ABC.
The bisector of angle BHC meets AB and AC at points P and Q respectively. The
perpendiculars to AB and AC from P and Q meet at K. Prove that KH bisects the
segment BC.

Solution. Note that A is the orthocenter of triangle BHC. Therefore, the problem
remains the same when we swap A and H. Reformulate it as follows.

Let H be the orthocenter of nonisosceles triangle ABC. The interior angle bisector through
A meets lines BH and CH at points P and Q, respectively. The perpendiculars to BH
and CH at P and Q, respectively, meet at K. Prove that line AK bisects segment BC.

Let M , S, and T be the midpoints of chord BC, arc BAC, and arc BC of circle ABC
respectively. Then point T lies on line APQ, and we want to show that points A, K, and
M are collinear.

Furthermore, let L be the intersection point of lines KH and PQ, let N be the projection
of point M onto line APQT , and let R be the intersection point of lines AH and MN
(fig.12).
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By a simple angle chase, figures HKLPQ and STMBC are similar deltoids. Therefore,
HL : LK = SM : MT . Since lines AS and MN are parallel, we have also SM : MT =
AN : NT . Finally, since lines AHR and SMT are parallel as well, AN : NT = RN : NM .
Now, AHR and ALN being straight lines, lines HLK and RNM being parallel, and
HL : LK = RN : NM , we obtain that points A, K, and M are collinear, as needed.

13. (A.Utkin, 9–11) Let I be the incenter of triangle ABC. The excircle with center IA touches
the side BC at A′. The line l passing through I and perpendicular to BI meets IAA

′ at
point K lying on the medial line parallel to BC. Prove that ∠B ≤ 60◦.

Solution. Let AHA be the altitude of triangle, M be the midpoint of this altitude, and
N be the common point of AHA and BI. Then A′, I, M — the projections of K to BC,
BI, AHA respectively — are collinear, therefore, BKNHA is a cyclic quadrilateral and
∠BKHA = ∠BNHA = 90◦ − ∠B/2.

Since the midpoint MC of AB is equidistant from B and HA, and MCK ∥ BHA, we obtain
that ∠BKHA < ∠BMCHA = 180◦ − 2∠B, this yields the required inequality.

14. (F.Ivlev, 9–11) A nonisosceles triangle is given. Prove that one of the circles touching
internally its incircle and circumcircle and touching externally one of its excircles passes
through a vertex of the triangle.

Solution. Let ω be the incircle and let ωA be the excircle opposite to A. Also let t be
the second common internal tangent of ω and ωA.

Consider the inversion with center A which swaps ω and ωA. This inversion maps line t
onto a circle s passing through A which is tangent to ω internally and to ωA externally,
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and whose tangent at A is parallel to t.

On the other hand, lines BC and t are symmetric with respect to interior angle bisector
of angle A, and so the tangents to s and the circumcircle of ABC at A coincide. Thus s
is also tangent to the circumcircle (internally), and we are done.

15. (A.Akopyan, 9–11) A circle passing through the vertices B and D of quadrilateral ABCD
meets AB, BC, CD, and DA at points K, L, M , and N respectively. A circle passing
through K and M meets AC at P and Q. Prove that L, N , P , and Q are concyclic.

Solution. By Pascal’s theorem for cyclic hexagon BKMDNL, lines KM and LN meet
at some point X on line AC. In circle BDKLMN we have KX ·XM = LX ·XN (fig.15).
Then in circle KMPQ we have KX ·XM = PX ·XQ. The claim follows.
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16. (P.Ryabov, 9–11) Cevians AP and AQ of a triangle ABC are symmetric with respect to
its bisector. Let X, Y be the projections of B to AP and AQ respectively, and N , M be
the projections of C to AP and AQ respectively. Prove that XM and NY meet on BC.

Solution. Note that M , N , X, and Y lie on the circle Ω. In fact the similarity of triangles
ABX and ACM yields that AX : AM = AB : AC. Similarly AN : AY = AC : AB.
Thus AX ·AN = AY ·AM . Also, since the perpendicular bisectors to XN and YM pass
through the midpoint T of BC, we obtain that T is the center of Ω.

Let AH be the altitude of ABC and Z be the common point of MN and XY . Then Z
lies on AH because AH, MN and XY are radical axes of circles Ω, ABXY and ACMN .
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Finally, let MX and NY meet at W . Then W is the pole of line AZ with respect to circle
XMYN , therefore, AZ ⊥ TW , i.e. W lies on BC.

Remark. After the correspondence round was published we learned that this problem is
the same as Balkan Mathematical Olympiad 2019 problem 3.

17. (A.Kazakov, 10–11) Chords A1A2 and B1B2 meet at point D. Suppose D′ is the inversion
image of D and the line A1B1 meets the perpendicular bisector to DD′ at a point C.
Prove that CD ∥ A2B2.

Solution. Since C lies on the radical axis of the given circle and the point D, we have
CD2 = CB1 · CA1, therefore, ∠CDB1 = ∠DA1C = ∠A2B2D.

18. (D.Shvetsov, Yu.Zaytseva, 10–11) Bisectors AA1, BB1, and CC1 of triangle ABC meet at
point I. The perpendicular bisector to BB1 meets AA1, CC1 at points A0, C0 respectively.
Prove that the circumcircles of triangles A0IC0 and ABC touch.

First solution. The perpendicular bisector to BB1 and the bisector of angle A meet
on the circumcircle of triangle ABB1, therefore, ∠IBA0 = ∠IAB. Similarly ∠IBC0 =
∠ICB. Then ∠A0BC0 = ∠A1IC, i.e. I, A0, C0, and B are concyclic (fig.18). The angle
between the tangent to this circle at B and the line BB1 equals to ∠BC0A0 +∠A0BI =
∠IAC +∠AIB1 = ∠BB1C. The angle between BB1 and the tangent to the circumcircle
of ABC is the same. Thus both circles touch at B.
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Second solution. Let angle bisectors AA1, BB1, and CC1 meet the circumcircle of
triangle ABC again at A′, B′, and C ′ respectively. Also let M be the midpoint of BB1

and N be the midpoint of BI. Note that line A′C ′ is the perpendicular bisector of segment
BI.

We claim that quadrilaterals A0IC0B and A′BC ′B′ are similar. Once we have this, the
rest of the problem follows easily: Since A′BC ′B′ is cyclic, circle A0IC0 passes through
B. Also, since lines A0C0 and A′C ′ are parallel, circles A0IC0 and A′IC ′ are tangent at
I. But now reflection about line A′C ′ preserves the first circle (since it passes through B
and I), and it maps the second circle onto the circumcircle of triangle ABC. Therefore,
circles A0IC0 and ABC are tangent at B.

To prove the similarity, note that triangles A0IC0 and A′BC ′ are similar by equal angles,
and segments IM and BN are corresponding altitudes in them. After that, we are only
left to prove BM : BI = B′N : B′B. This is equivalent to BB1 : BI = (B′I + B′B) :
B′B. After subtraction of 1 from both sides, this becomes IB1 : BI = B′I : B′B. Now
IB1 : BI = AB1 : AB = B′C : B′B = B′I : B′B. The solution is complete.

19. (A.Zaslavsky, 10–11) Quadrilateral ABCD is such that AB ⊥ CD and AD ⊥ BC. Prove
that there exists a point such that the distances from it to the sidelines are proportional
to the lengths of the corresponding sides.

Решение. By assumption, altitudes AA′ and CC ′ of triangle ABC meet at D. Reflect
the median of ABC from B about the corresponding bisector and find the common point
L of the obtained line with A′C ′. Since A, C, A′, C ′ lie on the circle with diameter
AC, we have ∠LA′C = ∠DAC = π/2 − ∠BCA. Hence the ratio of distances from L
to AB and CD equals sin∠LA′B/ sin∠LA′C = tg∠BCA. But AB = 2R sin∠BCA,
CD = 2R cos∠BCA, where R is the circumradius of ABC. Therefore the distances from
L to AB and CD are proportional to their sidelengths. Similarly for sides AD and BC.
Also since L lies on the symmedian of ABC, the distances from L to AB and BC are
also proportional to their sidelengths, i.e. L is the required point.
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20. (M.Didin, 10–11) The line touching the incircle of triangle ABC and parallel to BC meets
the external bisector of angle A at point X. Let Y be the midpoint of arc BAC of the
circumcircle. Prove that the angle XIY is right.

First solution. Let the tangent parallel to BC touch the incircle at D. Also let the
incircle touch sides BC, CA, and AB at A′, B′, and C ′, respectively. Let M be the
midpoint of BC. Finally suppose without loss of generality that AB > AC, and let Z
and T be the projections of Y onto lines AB and IA′, respectively.

Triangles AY Z and IAB′ are similar because ∠AY Z = ∠IAB′ = ∠A/2 and ∠AZY =
∠IB′A = 90◦. Thus AY : AZ = IA : IB′. On the other hand, by the Archimedes lemma,
Z is the midpoint of the broken line ABC. Thus AZ = (c − b)/2 = A′M = Y T . Also
IB′ = ID. Therefore, AY : Y T = AI : ID (fig.20).
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Since also AY ⊥ AI and Y T ⊥ ID, there exists a spiral similarity with center A and
angle 90◦ which maps Y onto I, T onto D, line AI onto line AX, and line TI onto line
DX. Therefore, the same spiral similarity maps I onto X, and so also line Y I onto line
IX. The solution is complete.

Second solution. Since DX is the polar of D with respect to the incircle, and AX is the
polar of the midpoint A0 of B′C ′, we have to prove that DA0 ∥ IY . Note that the triangle
A′B′C ′ is homothetic to the triangle IaIbIc formed by the excenters, this homothety maps
Y to A0, and I to the orthocenter of A′B′C ′. But D, the point opposite to A′, is the
reflection of the orthocenter about A0, q.e.d.

21. (A.Zaslavsky, 10–11) The diagonals of bicentric quadrilateral ABCD meet at point L.
Given are three segments equal to AL, BL, CL. Restore the quadrilateral using a compass
and a ruler.

Solution. Since ABCD is cyclic, we have AL · LC = BL · LD. So we can recover the
length of DL. Let AL = a, BL = b, CL = c, and DL = d.

Let the incircle of ABCD touch segments AB, BC, CD, and DA at points P , Q, R, and
S, respectively. It is well-known that in a circumscribed quadrilateral lines PR and QS
meet at L. Moreover since ABCD is cyclic, we have that lines PR and QS are in fact
the two angle bisectors of the angle formed by lines AC and BD.
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Let AS = AP = a′, BP = BQ = b′, CQ = CR = c′, and DR = DS = d′. By the angle
bisector theorem for triangle ALB, we have that AL : LB = AP : PB or, equivalently,
a′ : a = b′ : b. Analogously, a′ : a = b′ : b = c′ : c = d′ : d. Denote this ratio by x. Then
AB = (a+ b)x, and analogously for BC, CD, and DA.

By Ptolemy’s theorem for ABCD, we have that AB · CD + BC ·DA = AC · BD. That
is,

x2(a+ b)(c+ d) + x2(b+ c)(d+ a) = (a+ c)(b+ d).

Therefore,
x =

√
(a+ c)(b+ d)/((a+ b)(c+ d) + (b+ c)(d+ a)).

Using this value of x, we can construct segments AB, BC, CD, DA, and so the quadrilateral
ABCD.

Remark. We can also express the lengths of segments LP , LQ, LR, LS through a, b, c,
d and φ = ∠ALB and find cosφ from equality PL · LR = QL · LS.

22. (A.Khurmi, K.V.Sudharshan, 10–11) Let Ω be the circumcircle of cyclic quadrilateral
ABCD. Consider such pairs of points P , Q of diagonal AC that the rays BP and BQ
are symmetric with respect the bisector of angle B. Find the locus of circumcenters of
triangles PDQ.

Solution. Let lines BP and BQ meet circle ABCD again at points R and S, respectively.
Since ∠ABP = ∠CBQ, we have that ⌣ AR =⌣ CS. Thus lines AC and RS are parallel.
Consequently, a homothety centered at B maps triangle BPQ onto triangle BRS, and
so circles BPQ and BRS = ABCD are tangent at point B.

Let the tangent to circle ABCD at B meet line AC at point X, and let line DX meet
circle ABCD again at E. Note that both points X and E are fixed when points P and
Q vary.

Then line BX is the radical axis of circles ABCD and BPQ, whereas line AC is the
radical axis of circles BPQ and DPQ. Consequently, line DEX is the radical axis of
circles ABCD and DPQ. Thus point E always lies on circle DPQ when points P and
Q vary (fig.22). Therefore, the locus of the circumcenters of all triangles DPQ is the
perpendicular bisector of segment DE, except all points O on this perpendicular bisector
for which the circle with center O through D and E does not intersect line AC. (All such
exceptional points O form an open interval.)
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23. (N.Beluhov, 10–11) A non-self-intersecting polygon is nearly convex if precisely one of its
interior angles is greater than 180◦.

One million distinct points lie in the plane in such a way that no three of them are
collinear. We would like to construct a nearly convex one-million-gon whose vertices are
precisely the one million given points. Is it possible that there exist precisely ten such
polygons?

Answer. No, it is not.

Solution. Let P1, P2, . . . , Pn be all given points (with n = 1000000) and let H =
H1H2 . . . Hk be their convex hull. We refer to points H1, H2, . . . , Hk as outer points,
and to the remaining n− k points as inner points.

Let Q1, Q2, . . . , Qn be a permutation of P1, P2, . . . , Pn such that polygon Q = Q1Q2 . . . Qn

is nearly convex. All sides of H except precisely one, say s, must also be sides of Q.

Let R be the unique vertex of Q such that the interior angle of Q at R is greater than
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180◦. Then R is an inner point and all inner points other than R lie in the interior of the
triangle spanned by R and s.

If there is a unique inner point, then it must coincide with R. In that case, every side of
H may play the role of s, and we have n− 1 options for Q. Since 1000000− 1 > 10, this
case cannot occur.

If there are precisely two inner points R1 and R2, then any one of them may play the
role of R. Suppose, for instance, that R ≡ R1. Then s is necessarily that side of H
where the ray R1R

→
2 pierces the contour of H, say HuHu+1, and Q may have precisely

the forms H1H2 . . . HuR1R2Hu+1 . . . Hk and H1H2 . . . HuR2R1Hu+1 . . . Hk. Consequently,
in this case we have precisely four options for Q and so this case is ruled out as well.

We are left to consider the case when there are at least three inner points. Let G =
G1G2 . . . Gm be their convex hull, m ≥ 3.

We say that a vertex Gi of G is promising if the rays GiG
→
i−1 and GiG

→
i+1 meet the same

side of H. (Here G0 ≡ Gm and Gm+1 ≡ G1.) Any Gi that can play the role of R must be
promising. However, perhaps not all promising Gi can play the role of R.

We are going to show that there are at most three promising vertices of G.

To this end suppose by way of contradiction that there are at least four promising vertices
of G. Pick any four of them and label them A, B, C, and D in such a way that ABCD
is a convex quadrilateral and ∠A+ ∠B ≥ 180◦.

Then ray BC→ lies in the interior of the angle spanned by rays AB→ and AD→. Since A
is promising, it follows that all three rays meet the same side of H.

However, since B is also promising, rays BA→ and BC→ meet the same side of H as
well. It follows that rays AB→ and BA→ meet the same side of H. We have arrived at a
contradiction.

Let then Gl be a promising vertex of G with rays GlG
→
l−1 and GlG

→
l+1 meeting the same

side HuHu+1 of H.

Consider a ray r→ emanating from Gl and pointing in the direction of ray GlG
→
l−1. Rotate

r→ about Gl so that it remains in the interior of ∠Gl−1GlGl+1 until it takes the direction
of ray GlG

→
l+1. Let J1 ≡ Gl−1, J2, . . . , Jn−k−1 ≡ Gl+1 be all inner points other than Gl in

the order in which they are swept by r→. Let also J0 ≡ Hu and Jn−k ≡ Hu+1. Then for
some 0 ≤ v ≤ n− k − 1 we must have

Q ≡ H1H2 . . . Hu−1J0J1 . . . JvGlJv+1Jv+2 . . . Jn−kHu+2Hu+3 . . . Hk.

Consider the non-selfintersecting polygon

Q′ = H1H2 . . . Hu−1J0J1 . . . Jn−kHu+2Hu+3 . . . Hk.

Since Q′ is nonconvex, at least one of its interior angles must be greater than 180◦. Since
its interior angles at H1, H2,. . . ,Hu ≡ J0, Hu+1 ≡ Jn−k, . . . , Hk are all smaller than 180◦,
there must exist some 1 ≤ w ≤ n−k−1 such that the interior angle of Q′ at Jw is greater
than 180◦.

It follows that we must have either v = w − 1 or v = w. (Otherwise Q would have two
interior angles greater than 180◦, one at Gl and one at Jw.) Thus each promising vertex
Gl of G yields at most two options for Q.
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Consequently, the total number of options for Q does not exceed three promising vertices
Gl of G times two options for Q associated with each such vertex. Since 3 · 2 = 6 < 10, it
is impossible that there exist precisely seven options for Q.

24. (I.Bogdanov, 11) Let I be the incenter of a tetrahedron ABCD, and J be the center
of the exsphere touching the face BCD and the planes containing three remaining faces
(outside these faces). The segment IJ meets the circumsphere of the tetrahedron at point
K. Which of two segments IK and JK is longer?

Answer. IK.

Solution. Consider the plane passing through line AIJ and perpendicular to the plane
BCD. It intersects both spheres by their great circles. Let the tangents from A to these
circles meet BCD at points X and Y . Then I and J are the incenter and the excenter
of triangle AXY , thus the midpoint of IJ lies on the arc XY of the circumcircle of this
triangle. But X and Y lie inside the circumsphere of the tetrahedron, therefore arc XY
also lies inside it and IK > IJ/2 > JK.
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