XVI GEOMETRICAL OLYMPIAD IN HONOUR OF
I.LF.SHARYGIN
The correspondence round. Solutions

1. (D.Shvetsov, 8) Let ABC be a triangle with ZC' = 90°, and Ay, By, Cy be the midpoints of
sides BC', C' A, AB respectively. Two regular triangles AByC; and BAyC5 are constructed
outside ABC'. Find the angle CyC4C5.

Answer. 30°.

Solution. Since C()Bg = AOB = AoCQ, COAO = AB() = Bocl and ZC@A()CQ = ZCDBocl =
150°, we obtain that triangles CyA¢Cy and CyByCy are congruent (fig.1). Thus CyC; =
CoCy and £C1CyCy = LACoBy + £BoCyCy + £LAyCoCy = 120°. Therefore £ZCyCCy =
LCyCyCy = 30°.
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2. (A.Akopyan, 8) Let ABCD be a cyclic quadrilateral. A circle passing through A and B
meets AC and BD at points E and F respectively. The lines AF and BC meet at point
P, and the lines BE and AD meet at point (). Prove that P(Q is parallel to C'D.

Solution. Since quadrilaterals ABC'D and ABEF are cyclic, we have Z/CBD = ZCAD
and ZEBF = ZEAF. Thus ZPBQ = ZPAQ, i.e. ABPQ is also cyclic (fig.2). Therefore
CD and PQ are parallel because both lines are antiparallel to AB with respect to lines
AP and BQ.



Fig. 2

3. (N.Moskvitin, 8) Let ABC be a triangle with ZC' = 90°, and D be a point outside ABC,
such that ZADC = ZBAC'. The segments CD and AB meet at point E. It is known
that the distance from E to AC' is equal to the circumradius of triangle ADFE. Find the
angles of triangle ABC'.

Answer. /A = /B = 45°.

Solution. By the sine law the circumradius of triangle ADFE equals to AE/2sin ZADE.
On the other hand the distance from E to AC equals to AEsin ZBAC. Then by the
assumption we obtain that 2sin* ZA = 1, i.e. ZA = 45° (fig.3).

Fig. 3



4. (D.Burek, 8) Let ABC'D be an isosceles trapezoid with bases AB and C'D. Prove that
the centroid of triangle ABD lies on line C'F', where F' is the projection of D to AB.

Solution. Let M be the midpoint of AB. Then FM = CD/2, therefore the diagonals
of trapezoid C DF M divide each other in ratio 2 : 1 from points C, D (fig.4). Hence the
common point of diagonals coincides with the centroid of ABD.
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5. (A.Kulikova, D.Prokopenko, 8-9) Let BB;, C'C; be the altitudes of triangle ABC, and
AD be the diameter of its circumcircle. The lines BBy and DC; meet at point E, the
lines C'Cy and DB; meet at point F'. Prove that ZCAE = Z/BAF.

Solution. Let H be the orthocenter of ABC'. Then rays AH and AD are isogonal with
respect to angle B; ACY. By the isogonal theorem AE and AF are also isogonal.

6. (A.Akopyan, 8-9) Circles w; and wy meet at points P and @. Let O be the common point
of common external tangents to w; and wy. A line passing trough O meets w; and wy
respectively at points A and B located on the same side with respect to the line P(Q). The
line PA meets w, for the second time at C', and the line QB meets w; for the second time
at D. Prove that O, C, and D are collinear.

Solution. Since quadrilaterals ADP(@ and BPC(Q are cyclic, we obtain that ZDAC =
£ZDQP = ZBCP, ie. AD || BC (fig.6). Since O is the homothety center of the given
circles and this homothety maps A to B, it maps D to C.



Fig. 6

7. (V.Starodub, 8-9) Prove that the medial lines of triangle ABC meet the sides of triangle
formed by its excenters at six concyclic points.

Pemnenne. Let A, be the projection of A onto the exterior angle bisector through B, and
define A., B., B,, C,, and Cj, similarly. It is well-known that A, A, is the medial line of
triangle ABC opposite to A. Thus we want to show that A4,C,B.A.C,B, is cyclic.

Let I,, I, and I. be the excenters opposite to A, B, and C. Then AA,I,A. and BCB.C,,
are both cyclic. Hence LA Ayl, = LAAl, = (1 — 4B)/2 = LCBIl, = ZCyB.l, i.e
quadrilateral A,A.B.C, is cyclic (fig.7). But the perpendicular bisectors to A.B. and
ApCy pass through the midpoints of AB, AC and are parallel to the bisectors of angles
C, B respectively. Thus the center of circle A,A.B.Cj, coincides with the incenter of the
medial triangle. This yields that B,, C, lie on the same circle.
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Fig. 7

(P.Ryabov, 8-9) Two circles meeting at points P and R are given. Let [y, I be two lines
passing through P. The line [; meets the circles for the second time at points A; and B;.
The tangents at these points to the circumcircle of triangle A1 RB; meet at point C. The
line C1 R meets A;B; at point D;. Points Ay, By, C5, Dy are defined similarly. Prove that
the circles DDy P and C1C5R touch.

Solution. Let us prove that these circles touch at R. Note that Dy, Dy, P, and R are
concyclic because D1 R and DR are corresponding lines in similar triangles A; RB; and
Ao RBs. Let the tangents to the circles at A; and A; meet at point X, and the tangents
at By and By meet at Y. Note that ZA; X Ay = ZA; RA, (the rotation angle), therefore
Ay, X, R, and A, are concyclic. Similarly X, R, C, (5, and Y are concyclic. Now we
have to prove that Dy Dy || C1Cs. We have Z/D1DsR = /D1PR = ZRXC, = ZRC5(CY,

therefore these lines are parallel, q.e.d.

(G.Filippovsky, 8-9) The vertex A, the circumcenter O, and the Euler line [ of triangle
ABC are given. It is known that [ meets AB and AC' at two points equidistant from A.
Restore the triangle.

Solution. We have that the Euler line is parallel to the exterior angle bisector at A. Since
AO and AH are isogonal rays with respect to ZA, it follows that AO = AH. Thus we can
recover H as the second point where the circle with center A and radius AO meets the
Euler line. Furthermore let line AH meet the circumcircle (which we can recover because
we know its center O and one point on it, namely A) again at D. Then B and C are the
points where the perpendicular bisector of segment H D meets the circumcircle.

Remark. Since AH is twice the distance from O to BC' in each triangle and AH equals
the circumradius in our triangle, we have that ZA = 60° or LA = 120°. It is not too
difficult to show that if ZA = 60° then the Euler line is parallel to the exterior angle
bisector at A, and if LA = 120° then it is parallel to the interior angle bisector at A.
Thus in the problem we must necessarily have that ZA = 60°.

(A.Ivanischuk, 8-9) Given are a closed broken line A;A,... A, and a circle w which
touches each of lines Ay As, AAs, ..., A, A;. Call the link good, if it touches w, and bad
otherwise (i.e. if the extension of this link touches w). Prove that the number of bad links
is even.

Solution. Let O be the center of the circle. For all 7, let T; be the tangency point
of the circle and line A;A;11. (We define A, ; to be simply another name for point
A;.) We say that triangle ABC' is positively oriented if vertices A, B, and C occur in
counterclockwise order along the boundary of the triangle, and we say that it is negatively
oriented otherwise.

Note that triangles OA;T; and OA; 1 T; are identically oriented if and only if segment
A;A;11 is bad. On the other hand, triangles OA;1T; and OA;1T;., are always differently
oriented. Therefore, segment A;A; . is bad if and only if triangles OA;T; and OA; 1T} 1
are oriented differently. Thus the number of bad segments equals the number of changes of
orientation in the cyclic sequence of triangles OA Ty, OATs, ..., OA,T,, and so it must
be even. (Since orientation must change an even number of times in order to turn out the
same when we arrive back at the beginning of the sequence.)
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11.

12.

(A.Utkin, 8-9) Let ABC be a triangle with ZA = 60°, AD be its bisector, and PD(Q) be
a regular triangle with altitude DA. The lines PB and QC meet at point K. Prove that
AK is a symmedian of ABC'.

Solution. Let us prove that P and B lie on the different sides with respect to AD. In
fact, in the other case let U be the common point of AD and PD, and V be the common
point of AC and QD. Then AUDYV is a rhombus, because ZUAD = /VAD = /ZUDA =
ZV DA = 30°. Applying the Pappus theorem to points (P, A, Q) and (B, D, C) we obtain
that PB || QC, which contradicts the assumption (fig.11).

D
Fig. 11

Now note that by the isogonal theorem PB and QC, PC and QB are isogonal with
respect to angle A. But as shown above PC' and QB are parallel, and since AP = AQ),
they are parallel to the median of ABC'. This yields the required assertion.

(A.Mudgal, P.Srivastava, 8-10) Let H be the orthocenter of a nonisosceles triangle ABC.
The bisector of angle BHC meets AB and AC' at points P and @) respectively. The
perpendiculars to AB and AC from P and () meet at K. Prove that K H bisects the
segment BC'.

Solution. Note that A is the orthocenter of triangle BHC'. Therefore, the problem
remains the same when we swap A and H. Reformulate it as follows.

Let H be the orthocenter of nonisosceles triangle ABC'. The interior angle bisector through
A meets lines BH and C'H at points P and @), respectively. The perpendiculars to BH
and CH at P and @, respectively, meet at K. Prove that line AK bisects segment BC'.

Let M, S, and T be the midpoints of chord BC, arc BAC, and arc BC' of circle ABC
respectively. Then point 7 lies on line AP(Q), and we want to show that points A, K, and
M are collinear.

Furthermore, let L be the intersection point of lines K H and PQ), let N be the projection

of point M onto line APQT, and let R be the intersection point of lines AH and M N
(fig.12).
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14.
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By a simple angle chase, figures H K LP(Q) and ST M BC' are similar deltoids. Therefore,
HL: LK = SM : MT. Since lines AS and M N are parallel, we have also SM : MT =
AN : NT. Finally, since lines AH R and SMT are parallel as well, AN : NT'= RN : NM.
Now, AHR and ALN being straight lines, lines HLK and RN M being parallel, and
HL: LK = RN : NM, we obtain that points A, K, and M are collinear, as needed.

(A.Utkin, 9-11) Let I be the incenter of triangle ABC'. The excircle with center I touches
the side BC' at A’. The line [ passing through I and perpendicular to BI meets [4A" at
point K lying on the medial line parallel to BC'. Prove that ZB < 60°.

Solution. Let AH 4 be the altitude of triangle, M be the midpoint of this altitude, and
N be the common point of AH, and BI. Then A’, I, M — the projections of K to BC,
BI, AH 4 respectively — are collinear, therefore, BKNH 4 is a cyclic quadrilateral and
/BKHy=/BNH, =90°— £B/2.

Since the midpoint M of AB is equidistant from B and H,4, and McK || BH 4, we obtain
that /BKH4 < ZBMcH4 = 180° — 2/ B, this yields the required inequality.

(F.Ivlev, 9-11) A nonisosceles triangle is given. Prove that one of the circles touching
internally its incircle and circumcircle and touching externally one of its excircles passes
through a vertex of the triangle.

Solution. Let w be the incircle and let w4 be the excircle opposite to A. Also let ¢ be
the second common internal tangent of w and wj4.

Consider the inversion with center A which swaps w and w,. This inversion maps line ¢
onto a circle s passing through A which is tangent to w internally and to w, externally,
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15.

and whose tangent at A is parallel to t.

On the other hand, lines BC' and t are symmetric with respect to interior angle bisector
of angle A, and so the tangents to s and the circumcircle of ABC at A coincide. Thus s
is also tangent to the circumcircle (internally), and we are done.

(A.Akopyan, 9-11) A circle passing through the vertices B and D of quadrilateral ABC'D
meets AB, BC', CD, and DA at points K, L, M, and N respectively. A circle passing
through K and M meets AC at P and ). Prove that L, N, P, and () are concyclic.

Solution. By Pascal’s theorem for cyclic hexagon BKM DN L, lines KM and LN meet
at some point X on line AC'. In circle BDKLMN we have KX - XM = LX - XN (fig.15).
Then in circle KM PQ we have KX - XM = PX - X@Q. The claim follows.

Fig. 15

16. (P.Ryabov, 9-11) Cevians AP and AQ of a triangle ABC' are symmetric with respect to

its bisector. Let X, Y be the projections of B to AP and AQ respectively, and N, M be
the projections of C' to AP and AQ respectively. Prove that XM and NY meet on BC.

Solution. Note that M, N, X, and Y lie on the circle 2. In fact the similarity of triangles
ABX and ACM yields that AX : AM = AB : AC. Similarly AN : AY = AC : AB.
Thus AX - AN = AY - AM. Also, since the perpendicular bisectors to X N and Y M pass
through the midpoint 7" of BC', we obtain that T is the center of €.

Let AH be the altitude of ABC' and Z be the common point of M N and XY. Then Z
lies on AH because AH, M N and XY are radical axes of circles 2, ABXY and ACMN.
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18.

Fig. 16

Finally, let M X and NY meet at W. Then W is the pole of line AZ with respect to circle
XMY N, therefore, AZ 1. TW, i.e. W lies on BC.

Remark. After the correspondence round was published we learned that this problem is
the same as Balkan Mathematical Olympiad 2019 problem 3.

(A.Kazakov, 10-11) Chords A; Ay and By By meet at point D. Suppose D’ is the inversion
image of D and the line A;B; meets the perpendicular bisector to DD’ at a point C.
Prove that CD || AyBs.

Solution. Since C' lies on the radical axis of the given circle and the point D, we have
CD? = CB; - CAy, therefore, /ODB; = /DA,C = LA3B,D.

(D.Shvetsov, Yu.Zaytseva, 10-11) Bisectors AA;, BB;, and C'C} of triangle ABC meet at
point I. The perpendicular bisector to BB, meets AA;, CCy at points Ay, Cy respectively.
Prove that the circumcircles of triangles AgICy and ABC' touch.

First solution. The perpendicular bisector to BB; and the bisector of angle A meet
on the circumcircle of triangle ABB;, therefore, ZIBAy = ZIAB. Similarly ZIBCy =
ZICB. Then LAyBCy = LAIC, ie. I, Ay, Cy, and B are concyclic (fig.18). The angle
between the tangent to this circle at B and the line BB; equals to ZBCyAy + LABI =
LITAC+ ZAIBy = ZBB,C. The angle between BB; and the tangent to the circumcircle
of ABC' is the same. Thus both circles touch at B.



19.
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Second solution. Let angle bisectors AA;, BB;, and CC} meet the circumcircle of
triangle ABC again at A’, B’, and C’ respectively. Also let M be the midpoint of BB,
and N be the midpoint of BI. Note that line A’C" is the perpendicular bisector of segment
BI.

We claim that quadrilaterals Agl/CyB and A’BC’B’ are similar. Once we have this, the
rest of the problem follows easily: Since A’BC’'B’ is cyclic, circle AygICy passes through
B. Also, since lines AgCy and A’C" are parallel, circles AgICy and A’IC" are tangent at
I. But now reflection about line A’C" preserves the first circle (since it passes through B
and I), and it maps the second circle onto the circumcircle of triangle ABC'. Therefore,
circles AgICy and ABC' are tangent at B.

To prove the similarity, note that triangles AgICy and A’BC" are similar by equal angles,
and segments IM and BN are corresponding altitudes in them. After that, we are only
left to prove BM : BI = B'N : B'B. This is equivalent to BB, : BI = (B'] + B'B) :
B’B. After subtraction of 1 from both sides, this becomes IB; : BI = B'] : B'B. Now
IB,: Bl = AB,: AB=B'C : BB = B'I : B’B. The solution is complete.

(A.Zaslavsky, 10-11) Quadrilateral ABCD is such that AB L CD and AD 1 BC. Prove
that there exists a point such that the distances from it to the sidelines are proportional
to the lengths of the corresponding sides.

Pemenne. By assumption, altitudes AA” and C'C”’ of triangle ABC' meet at D. Reflect
the median of ABC from B about the corresponding bisector and find the common point
L of the obtained line with A’C’. Since A, C, A’, C' lie on the circle with diameter
AC, we have ZLA'C = ZDAC = /2 — ZBCA. Hence the ratio of distances from L
to AB and CD equals sin ZLA'B/sin ZLA'C' = tg ZBCA. But AB = 2Rsin ZBCA,
CD =2Rcos ZBCA, where R is the circumradius of ABC. Therefore the distances from
L to AB and CD are proportional to their sidelengths. Similarly for sides AD and BC.
Also since L lies on the symmedian of ABC, the distances from L to AB and BC are
also proportional to their sidelengths, i.e. L is the required point.
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20. (M.Didin, 10-11) The line touching the incircle of triangle ABC' and parallel to BC' meets

21.

the external bisector of angle A at point X. Let Y be the midpoint of arc BAC of the
circumcircle. Prove that the angle XY is right.

First solution. Let the tangent parallel to BC touch the incircle at D. Also let the
incircle touch sides BC, CA, and AB at A’, B’, and C’, respectively. Let M be the
midpoint of BC'. Finally suppose without loss of generality that AB > AC, and let Z
and T be the projections of Y onto lines AB and I A’, respectively.

Triangles AY' Z and IAB’ are similar because LAY Z = LZIAB' = ZA/2 and LAZY =
/ZIB'A =90°. Thus AY : AZ = IA : IB’. On the other hand, by the Archimedes lemma,
Z is the midpoint of the broken line ABC. Thus AZ = (¢ —b)/2 = A’M = YT. Also
IB" = ID. Therefore, AY : YT = Al : ID (fig.20).
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Since also AY 1 Al and YT 1 ID, there exists a spiral similarity with center A and
angle 90° which maps Y onto I, T onto D, line Al onto line AX, and line T'I onto line
DX. Therefore, the same spiral similarity maps I onto X, and so also line Y I onto line
IX. The solution is complete.

Second solution. Since DX is the polar of D with respect to the incircle, and AX is the
polar of the midpoint Ay of B’C’, we have to prove that DAy || IY. Note that the triangle
A’'B’'C" is homothetic to the triangle 1,1, 1. formed by the excenters, this homothety maps
Y to Ap, and I to the orthocenter of A’B’C’. But D, the point opposite to A’, is the
reflection of the orthocenter about Ag, q.e.d.

(A.Zaslavsky, 10-11) The diagonals of bicentric quadrilateral ABC'D meet at point L.
Given are three segments equal to AL, BL, C'L. Restore the quadrilateral using a compass
and a ruler.

Solution. Since ABCD is cyclic, we have AL - LC' = BL - LD. So we can recover the
length of DL. Let AL =a, BL=0, CL=c¢, and DL =d.

Let the incircle of ABC'D touch segments AB, BC', C'D, and DA at points P, ), R, and
S, respectively. It is well-known that in a circumscribed quadrilateral lines PR and QS
meet at L. Moreover since ABCD is cyclic, we have that lines PR and QS are in fact
the two angle bisectors of the angle formed by lines AC and BD.
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22.

Let AS= AP =d, BP=BQ =V,CQ =CR=¢,and DR = DS = d'. By the angle
bisector theorem for triangle ALB, we have that AL : LB = AP : PB or, equivalently,
/

a :a =10 :0b. Analogously, a’ : a = : b= ¢ : ¢ =d : d. Denote this ratio by x. Then
AB = (a + b)x, and analogously for BC', CD, and DA.

By Ptolemy’s theorem for ABC'D, we have that AB - CD + BC' - DA = AC' - BD. That
is,

2 (a+b)(c+d) +2*(b+c)(d+a) = (a+c)(b+d).

Therefore,

z=1/(a+c)b+d)/((a+b)(c+d)+ (b+c)(d+a)).

Using this value of x, we can construct segments AB, BC', C'D, DA, and so the quadrilateral
ABCD.

Remark. We can also express the lengths of segments LP, L(), LR, LS through a, b, c,
d and p = ZALB and find cos ¢ from equality PL- LR = QL - LS.

(A.Khurmi, K.V.Sudharshan, 10-11) Let Q be the circumcircle of cyclic quadrilateral
ABCD. Consider such pairs of points P, () of diagonal AC' that the rays BP and BQ

are symmetric with respect the bisector of angle B. Find the locus of circumcenters of
triangles PDQ).

Solution. Let lines BP and B(Q) meet circle ABC'D again at points R and S, respectively.
Since ZABP = ZCB(Q), we have that — AR =— C'S. Thus lines AC and RS are parallel.
Consequently, a homothety centered at B maps triangle BP( onto triangle BRS, and
so circles BP(Q and BRS = ABC'D are tangent at point B.

Let the tangent to circle ABCD at B meet line AC' at point X, and let line DX meet
circle ABC'D again at E. Note that both points X and E are fixed when points P and
Q vary.

Then line BX is the radical axis of circles ABCD and BP(), whereas line AC is the
radical axis of circles BP(@Q and DPQ. Consequently, line DEX is the radical axis of
circles ABCD and DP(Q). Thus point E always lies on circle DP(@) when points P and
Q vary (fig.22). Therefore, the locus of the circumcenters of all triangles DPQ is the
perpendicular bisector of segment DFE, except all points O on this perpendicular bisector
for which the circle with center O through D and E does not intersect line AC. (All such
exceptional points O form an open interval.)
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Fig. 22

23. (N.Beluhov, 10-11) A non-self-intersecting polygon is nearly convez if precisely one of its
interior angles is greater than 180°.

One million distinct points lie in the plane in such a way that no three of them are
collinear. We would like to construct a nearly convex one-million-gon whose vertices are
precisely the one million given points. Is it possible that there exist precisely ten such
polygons?

Answer. No, it is not.

Solution. Let P, P, ..., P, be all given points (with n = 1000000) and let H =
H\H, ... H; be their convex hull. We refer to points Hy, Ho, ..., H, as outer points,
and to the remaining n — k points as inner points.

Let Q1,Qs, ..., Q, be a permutation of Py, P, ..., P, such that polygon Q = Q1Q)>...Q,
is nearly convex. All sides of H except precisely one, say s, must also be sides of Q.

Let R be the unique vertex of ) such that the interior angle of () at R is greater than
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180°. Then R is an inner point and all inner points other than R lie in the interior of the
triangle spanned by R and s.

If there is a unique inner point, then it must coincide with R. In that case, every side of
H may play the role of s, and we have n — 1 options for (). Since 1000000 — 1 > 10, this
case cannot occur.

If there are precisely two inner points R; and Rs, then any one of them may play the
role of R. Suppose, for instance, that R = R;. Then s is necessarily that side of H
where the ray R; R, pierces the contour of H, say H,H, 1, and () may have precisely
the forms H1Hy ... HyR1RoH 1 ... H, and H1Hy ... H Ry R1H, .1 ... H,. Consequently,
in this case we have precisely four options for () and so this case is ruled out as well.

We are left to consider the case when there are at least three inner points. Let G =
G1G, .. .G, be their convex hull, m > 3.

We say that a vertex G; of G is promising if the rays G;G;7, and G;G7}, meet the same
side of H. (Here Gy = G,,, and G,,;1 = G1.) Any G, that can play the role of R must be
promising. However, perhaps not all promising G; can play the role of R.

We are going to show that there are at most three promising vertices of G.

To this end suppose by way of contradiction that there are at least four promising vertices

of GG. Pick any four of them and label them A, B, C'; and D in such a way that ABC' D
is a convex quadrilateral and ZA + ZB > 180°.

Then ray BC™ lies in the interior of the angle spanned by rays AB™ and AD™. Since A
is promising, it follows that all three rays meet the same side of H.

However, since B is also promising, rays BA™ and BC™ meet the same side of H as
well. It follows that rays AB™ and BA™ meet the same side of H. We have arrived at a
contradiction.

Let then G; be a promising vertex of G with rays G;G;”, and G;G}}, meeting the same
side H,H,,1 of H.

Consider a ray r— emanating from G, and pointing in the direction of ray ;G . Rotate
r— about G so that it remains in the interior of ZG;_1G;G,1 until it takes the direction
of ray GiG7,. Let Jy = Gi_1,Ja, ..., Ju—g—1 = Gi41 be all inner points other than G; in
the order in which they are swept by r—. Let also Jy = H, and J,,_y = H,4+1. Then for
some 0 < v <n—k—1 we must have

Q = H1H2 R Hu,1JOJ1 c. JUG1J1)+1JU+2 ce Jnkau+2Hu+3 . Hk

Consider the non-selfintersecting polygon

Q' = H\Hy...Hy1JoJy ... Iy HysoHuors ... Hy.

Since @)’ is nonconvex, at least one of its interior angles must be greater than 180°. Since
its interior angles at Hy, Hs,... H, = Jo, Hy11 = Jp—k, - .., Hy are all smaller than 180°,
there must exist some 1 < w < n—k — 1 such that the interior angle of Q) at J,, is greater
than 180°.

It follows that we must have either v = w — 1 or v = w. (Otherwise ) would have two
interior angles greater than 180°, one at GG; and one at J,,.) Thus each promising vertex
G of (G yields at most two options for ().
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24.

Consequently, the total number of options for () does not exceed three promising vertices
G of GG times two options for () associated with each such vertex. Since 3-2 =6 < 10, it
is impossible that there exist precisely seven options for ).

(I.Bogdanov, 11) Let I be the incenter of a tetrahedron ABCD, and J be the center
of the exsphere touching the face BC'D and the planes containing three remaining faces

(outside these faces). The segment I.J meets the circumsphere of the tetrahedron at point
K. Which of two segments I K and JK is longer?

Answer. /K.

Solution. Consider the plane passing through line AIJ and perpendicular to the plane
BCD. 1t intersects both spheres by their great circles. Let the tangents from A to these
circles meet BC'D at points X and Y. Then [ and J are the incenter and the excenter
of triangle AXY, thus the midpoint of I.J lies on the arc XY of the circumcircle of this
triangle. But X and Y lie inside the circumsphere of the tetrahedron, therefore arc XY
also lies inside it and IK > 1.J/2 > JK.

15



