
XVII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Solutions. Final round. First day. 8 form

1. (B.Frenkin) Let ABCD be a convex quadrilateral. The circumcenter and the
incenter of triangle ABC coincide with the incenter and the circumcenter of
triangle ADC respectively. It is known that AB = 1. Find the remaining
sidelengths and the angles of ABCD.

Answer. BC = CD = DA = 1, ∠A = ∠C = 72◦, ∠B = ∠D = 108◦.

Solution. Since the incenters of triangles ABC and ADC lie on the perpendicular
bisector to AC these triangles are isosceles. Also since the circumcenters lie
outside these triangles angles B and D are obtuse. Let O be the circumcenter
of triangle ABC. Theb ∠AOC = 360◦− 2∠B. On the other hand since O is
the incenter of triangle ADC, we have ∠AOC = 90◦ + ∠D/2. Similarly we
obtain that 360◦−2∠D = 90◦+∠B/2, which yields that ∠B = ∠D = 108◦

and ABCD is a rhombus (fig. 8.1).
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Fig. 8.1.

2. (P.Kozhevnikov) Three parallel lines la, lb, lc pass through the vertices of
triangle ABC. A line a is the reflection of altitude AHa about la. Lines b, c
are defined similarly. Prove that a, b, c are concurrent.

Solution. Since the angle between a and b equals the angle between the
altitudes we obtain that these lines meet at the circle which is the reflection of
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the circle ABH about AB (H is the orthocenter of ABC), i.e. their common
point lies on the circumcircle of ABC. The line c meets the circumcircle at
the same point (fig. 8.2).
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Fig. 8.2.

3. (A.Zaslavsky) Three cockroaches run along a circle in the same direction.
They start simultaneously from a point S. Cockroach A runs twice as slow
than B, and three times as slow than C. Points X, Y on segment SC are
such that SX = XY = Y C. The lines AX and BY meet at point Z. Find
the locus of centroids of triangles ZAB.

Answer. The center O of the given circle.

Solution. Let points U , V lie on the line AB in such a way that UA =
AB = BV . Then lines US and CV pass through Z, and parallel lines passing
through A and B respectively meet at the centroid M of triangle ABZ.
Since UA = AS, V B = BC, we obtain that ∠AUS = ∠ASU = ∠MAB =
∠MBA and ∠AMB = ∠UAS = ∠ASC = 2∠ASB = ∠AOB. Thus M
coincides with O (fig. 8.3).
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Remark. The solution dots not change if segments AX and BY intersect.

4. (I.Kukharchuk) Let A1 and C1 be the feet of altitudes AH and CH of an
acute-angled triangle ABC. Points A2 and C2 are the reflections of A1 and
C1 about AC. Prove that the distance between the circumcenters of triangles
C2HA1 and C1HA2 equals AC.

Solution. Let M be the midpoint of AC, and B1 be the foot of altitude
from B. Then MA1 = MC1 = MA2 = MC2 = MA, and lines A1C2, A2C1

meet at B1. Therefore the perpendicular bisector to A2C1 coincide with the
perpendicular from M to B1C1 which is parallel to the radius OA of the
circumcircle of triangle ABC. Hence it meets the perpendicular to AC from
A at point P such that AP = OM = BH/2. The perpendicular bisector to
C1H also passes through this point, thus P is the circumcenter of triangle
C1HA2 (fig. 8.4). Similarly the circumcenter of triangle A2HC1 coincide with
point Q lying on the perpendicular to AC from C and such that CQ = OM .
Since APQC is a rectangle, we obtain that PQ = AC.
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XVII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Solutions. Final round. Second day. 8 form

5. (M.Saghafian) Points A1, A2, A3, A4 are not concyclic, the same for points
B1, B2, B3, B4. For all i, j, k the circumradii of triangles AiAjAk and BiBjBk

are equal. Can we assert that AiAj = BiBj for all i, j?

Answer. No.

First solution. Let A1A2A3, B1B2B3 be two non-congruent triangles with
equal circumradii R, and A4, B4 be their orthocenters. Then the circumradii
of all triangles AiAjAk and BiBjBk are equal to R, but several equalities
AiAj = BiBj are not correct.

Second solution. Let A1B1A2B2 be a rectangle, points A3, A4 lie on a line
parallel to A1B2 and are symmetric with respect the center of this rectangle,
B3 coincide with A4, B4 coincide with A3 and A3A4 ̸= A1A2. Then A1, A2,
A3, A4 (B1, B2, B3, B4) are not concyclic, triangles AiAjAk and BiBjBk are
congruent for all i, j, k, but A1A3 ̸= B1B3.

6. (M.Didin) Let ABC be an acute-angled triangle. Point P is such that AP =
AB and PB ∥ AC. Point Q is such that AQ = AC and CQ ∥ AB. Segments
CP and BQ meet at point X. Prove that the circumcenter of triangle ABC
lies on the circle (PXQ).

Solution. Let D be the vertex of parallelogram ABDC. Then APDC and
AQDB are isosceles trapezoids. Therefore the perpendicular bisectors to
segments PD and QD coincide with the perpendicular bisectors to AC and
AB respectively, the circumcenter O of triangle ABC is also the circumcenter
of DPQ and ∠POQ = 2∠A. Also since ∠XPD = ∠ADP , ∠XQD =
∠ADQ we obtain that ∠PXQ = 2∠A (fig.8.6). Thus O, P , Q, X are
concyclic.
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Fig. 8.6.

7. (I.Kulharchuk) Let ABCDE be a convex pentagon such that angles CAB,
BCA, ECD, DEC and AEC are equal. Prove that CE bisects BD.

Solution. From the assumption we have CD ∥ AE. Let the line passing
through B and parallel to AE meet AC and CE at points P and Q respectively.
Then P and Q divide the bases CA and CE of similar isosceles triangles
ABC and CDE in the same ratio. hence ∠CBQ = ∠CDQ, BCDQ is a
parallelogram, and the midpoints of segments BD and CQ coincide (fig. 8.7).

A

B

C D

E

P Q

Fig. 8.7.

8. (S.Berlov) Does there exist a convex polygon such that all its sidelengths are
equal and all triangle formed by its vertices are obtuse-angled?

Answer. No.

Solution. Suppose the opposite. Let the sidelengths of the polygon are equal
to 1. Suppose that the side AB is horizontal and the polygon lies above
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it. Consider the stripe between the perpendiculars to segment AB at its
endpoints. Since the angles A and B are obtuse the vertices adjacent with A
and B lie on the different sides of this stripe. Hence there is a vertex C lying
inside the stripe. Only angle C of triangle ABC may be obtuse, thus the
distance from C to AB is less than 1/2. At least one of two vertices adjacent
with C lie below than C, Let this is a right vertex. Consider the most right
vertex D of the polygon. Two adjacent vertices lie between AB and parallel
line passing through C (fig. 8.8). Since the distance between these lines is
less than 1/2, the angles between the corresponding sides and the vertical
are greater than 60◦, therefore ∠D < 60◦ contradiction.
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Fig. 8.8.
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XVII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Solutions. Final round. First day. 9 form

1. (F.Ivlev, A.Mardanov) Three cevians concur at a point lying inside a triangle.
The feet of these cevians divide the sides into six segments, and the lengths
of these segments form (in some order) a geometric progression. Prove that
the lengths of the cevians also form a geometric progression.

Solution. Suppose the the minimal length of the segments equals 1. Then
the remaining lengths are q, q2, q3, q4 and q5, where q ≥ 1 is the denominator
of the progression. By the Ceva theorem the product of several three of these
numbers equals the product of the remaining ones i.e.

√
q15. This is possible

only if q = 1. Thus the given triangle is regular and the cevians are its
medians, i.e. their lengths are equal.

2. (M.Volchkevich) A cyclic pentagon is given. Prove that the ratio of its square
to the sum of the diagonals is not greater than the quarter of the circumradius.

Solution. Let A1A2A3A4A5 be a cyclic pentagon with circumcenter O. Then
for each i = 1, . . . , 5 SOAi−1AiAi+1

≤ OAi · Ai−1Ai+1/2 (we suppose that
Ai+5 = Ai). The sum of these five areas is not less than the doubled area of
the pentagon which yields the required inequality.

3. (M.Didin, I.Frolov) Let ABC be an acute-angled scalene triangle and T be a
point inside it such that ∠ATB = ∠BTC = 120◦. A circle centered at point
E passes through the midpoints of the sides of ABC. For B, T , E collinear
find angle ABC.

Answer. 30◦

Solution. Let A0, B0, C0 be the midpoints of BC, CA, AB respectively and
D be the vertex of a regular triangle ACD lying outside ABC. It is known
that T lies on BD. The homothety with center B and coefficient 1/2 maps the
line B0D to the perpendicular bisector to A0C0, therefore E is the midpoint
of BD and ∠C0EA0 = 60◦ (fig.9.3). Thus ∠ABC = ∠A0B0C0 = 30◦.
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4. (M.Saghafian) Define the distance between two triangles to be the closest
distance between two vertices, one from each triangle. Is it possible to draw
five triangles in the plane such that for any two of them, their distance equals
the sum of their circumradii?

Answer. No.

Solution. Call a cloud of triangle the union of three discs centered at
its vertices with radii equal to its circumradius. The distance between two
triangles equals the sum of their circumradii if and only if the corresponding
clouds touche. But five pairwise touching clouds do not exist because the
graph K5 is not planar.
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XVII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Solutions. Final round. Second day. 9 form

5. (P.Kozhevnikov) Let O be the circumcenter of triangle ABC. Points X and
Y on side BC are such that AX = BX and AY = CY . Prove that the
circumcircle of triangle AXY passes through the circumcenters of triangles
AOB and AOC.

Solution. By the assumption we obtain that OX is the perpendicular bisector
to AB, i.e. the circumcenter O1 of triangle AOB lies on OX and ∠AO1X =
∠AO1B/2 = π − 2∠C = ∠AYX (fig.9.5). Another dispositions of points
are considered similarly.
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Fig. 9.5.

6. (P.Ryabov) The diagonals of trapezoid ABCD (BC ∥ AD) meet at point O.
Points M and N lie on the segments BC and AD respectively. The tangent to
the circle AMC at C meets the ray NB at point P ; the tangent to the circle
BND at D meets the ray MA at point R. Prove that ∠BOP = ∠AOR.

Solution. Note that ∠NBD = ∠ADR and ∠MAC = ∠BCP (fig.9.6).
Therefore points P and R are isogonally conjugated in similar triangles BOC

and AOD, which yields the required equality.
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Fig. 9.6.

7. (M.Didin, F.Ivlev, I.Frolov) Three sidelines of on acute-angled triangle are
drawn on the plane. Fyodor wants to draw the altitudes of this triangle using
a ruler and a compass. Ivan obstructs him using an eraser. For each move
Fyodor may draw one line through two marked points or one circle centered
at a marked point and passing through another marked point. After this
Fyodor may mark an arbitrary number of points (the common points of
drawn lines, arbitrary points on the drawn lines or arbitrary points on the
plane). For each move Ivan erases at most three of marked point. (Fyodor
may not use the erased points in his constructions but he may mark them
for the second time). They move by turns, Fydors begins. Initially no points
are marked. Can Fyodor draw the altitudes?

Answer. Yes.

Solution. Note that Fyodor may mark sufficiently much points on the given
line, draw circles centered at these points and mark the common point of
these circles, and finally drawing the lines through these common points he
obtain sufficiently much perpendicular to the given line. Repeating these
operations for a perpendicular line Fyodor may obtain sufficiently much
lines parallel to the given one. Thus he may construct many lines parallel to
the side AB of given triangle ABC and mark their common points Ai, Bi

with BC, AC respectively. Now drawing circles centered at AC and passing
through Ai and marking the common points of such circles Fyodor may
construct the reflections of Ai about AC and the perpendiculars from Ai
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to AC. The perpendiculars from Bi to BC may be constructed similarly.
The common points of these perpendiculars — the orthocenters of triangles
CAiBi lie on the altitude from C.

8. (A.Dadgarnia) A quadrilateral ABCD is circumscribed around a circle ω
centered at I. Lines AC and BD meet at point P , lines AB and CD meet
at point E, lines AD and BC meet at point F . Point K on the circumcircle
of triangle EIF is such that ∠IKP = 90◦. The ray PK meets ω at point
Q. Prove that the circumcircle of triangle EQF touches ω.

Solution. Let W , X, Y , Z be the touching points of AB, BC, CD, DA

with ω. Then P is the common point of diagonals of quadrilateral WXY Z.
The inversion about ω maps E, F to the midpoints M , N of these diagonals
and maps the circle IEF to the Gauss line MN . Since K lies on the circle
with diameter IP its image K ′ lies on the polar of P — the line EF , which
is the radical axis of ω and the circle with diameter IP passing through M ,
N . This inversion maps PK to the circle with diameter IK ′, therefore K ′Q
touches ω (fig. 9.8), thus it touches the circle MNQ.
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Fig. 9.8.
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XVII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Solutions. Final round. First day. 10–11 form

1. (D.Shvetsov) Let CH be an altitude of right-angled triangle ABC (∠C =
90◦), HA1, HB1 be the bisectors of angles CHB, AHC respectively, and E,
F be the midpoints of HB1 and HA1 respectively. Prove that the lines AE
and BF meet on the bisector of angle ACB.
First solution. Let M be the midpoint of bisector CL of triangle ABC.
Then from the similarity of triangles ABC, ACH and CHB we obtain that
∠BAF = ∠MAC, ∠ABE = ∠MBC. Therefore the common point of lines
AE and BF is isogonally conjugated to M , i.e. it lies on CL (fig. 10.1).
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Fig. 10.1.

Second solution. Since AE is a median of triangle AHB1 we have sin∠B1AE :
sin∠HAE = AH : AB1 = (AH + CH) : AC (the second equality follows
from the bisector property). Similarly sin∠A2BF : sin∠HBF = (CH +
HB) : BC. From the similarity of triangles AHC and CHB we obtain that
these ratios are equal and by the Ceva theorem AE and BF meet on the
bisector.

2. Let ABC be a scalene triangle, and A0, B0, C0 be the midpoints of BC, CA,
AB respectively. The bisector of angle C meets A0C0 and B0C0 at points B1

and A1 respectively. Prove that the lines AB1, BA1 and A0B0 concur.
Solution. Points A1, B1 are the projections of A, B to the bisector CL, i.e.
AB1BA1 is a trapezoid. Hence the common point T of AB1 and A1B, L,
and the midpoints of segments AA1, BB1 are collinear and form a harmonic
quadruple (fig. 10.2). Projecting these points to CL by the lines parallel to
AB and using the homothety with center L and coefficient 2 we obtain the
harmonic quadruple C, L, A1, B1. Thus T lies on A0B0.
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Fig. 10.2.

3. K.Knop, G.Chelnokov) The bisector of angle A of triangle ABC (AB > AC)
meets its circumcircle at point P . The perpendicular to AC from C meets the
bisector of angle A at point K. A circle with center P and radius PK meets
the minor arc PA of the circumcircle at point D. Prove that the quadrilateral
ABDC is circumscribed.

Solution. The arc AB not containing C is greater than the arc AC not
containing B because AB > AC. The minor arc BP equals the minor arc
CP because AP is a bisector. therefore the arc ACP is less than 180◦ and
K lies on the chord EC where E is opposite to A. From this we obtain that
PK < PC and so D lie on the minor arc PC.

We have to prove that AB +DC = AC +BD.

Let the circle centered at P with radius PD meet for the second time
DB at point M . Construct the perpendicular PH from P to BD. By
the Archimedes lemma H bisects the length of the broken line BDC, i.e.
BH = HD +DC, but since MH = HD we obtain that BM = DC.

Consider the reflection N of C about the bisector AP . We have AC = AN ,
also PC = PN , i.e C, N , B lie on a circle centered at P . Now wt have to
prove that BN = DM .

Let PL be the perpendicular to EC and PR be the perpendicular to BA.
Then BN = 2BR = 2PL = 2DH = DM (fig.10.3).
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The second equality is correct because the triangles PRB and CLP are
congruent (∠BPR = 90◦−∠PBA = ∠PCE = ∠PCL). The third equality
is correct because the triangles PLK and DHP are congruent (∠LPK =
∠PAC = ∠PAB = ∠PDH).

4. (T.Korchyomkina) Can a triangle be a development of a quadrangular pyramid?

Answer. Yes.

Solution. Take a triangle SAB with SA = SB > AB. Let S ′be the
midpoint of AB, A′, B′ be the points on the sides SA, SB such that
SA′ = SB′ = S ′A, and C, D be the midpoints of BB′, AA′ respectively.
Then we can bend the triangle by segments A′B′ and CD in such a way that
S will be joined with S ′. Now the triangles SAD, SA′D, SBC and SB′C

are congruent, hence we can bending by SC and SD join A with A′ and B
with B′. As result we obtain the pyramid SABCD (fig.10.4).
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XVII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. Second day. 10–11 form

5. (P.Kozhevnikov) A secant meets one circle at points A1, B1, this secant
meets a second circle at points A2, B2. Another secant meets the first circle
at points C1, D1 and meets the second circle at points C2, D2. Prove that
points A1C1 ∩ B2D2, A1C1 ∩ A2C2, A2C2 ∩ B1D1, B2D2 ∩ B1D1 lie on a
circle coaxial with two given circles.

Solution. Let X be the common point of A1C1 and A2C2. Then the degree
of X with respect to the first circle equals to XA1 ·XC1, and its degree with
respect to the second circle equals XA2 · XC2. The ratio of these degrees
equals (fig. 10.5)
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:
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.
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D1
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X

Fig. 10.5.

For the remaining three points the ratios of degrees are the same. Buy the
locus of points with fixed ratio of degrees is a circle coaxial with two given
ones.

6. (D.Brodsky) The lateral sidelines AB and CD of trapezoid ABCD meet
at point S. The bisector of angle ASC meets the bases of the trapezoid at
points K and L (K lies inside segment SL). Point X is chosen on segment
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SK, and point Y is selected on the extension of SL beyond L in such a way
that ∠AXC − ∠AY C = ∠ASC. Prove that ∠BXD − ∠BYD = ∠BSD.

Solution. Let C ′ be the reflection of C about SX and Y ′ be such point on ray
CX that SX ·SY ′ = SB ·SD = SA ·SC. Then SX ·SY ′ = SC ′ ·SA, i.e. X,
Y ′, A, C ′ are concyclic (fig. 10.6). Therefore ∠AY ′S = ∠SC ′X = ∠SCX.
Similarly ∠XY ′C = ∠SAX , thus ∠AXC = ∠SAX + ∠SCX + ∠ASC =
∠AY ′C+∠ASC and Y ′ coincides with Y . Similarly we obtain that ∠ASD =
∠BXD − ∠BYD.
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Y

Fig. 10.6.

Remark. We can also prove that ∠XAY = ∠XCY , ∠XBY = ∠XDY .

7. (M.Etesamifard) Let I be the incenter of a right-angled triangle ABC, and
M be the midpoint of hypothenuse AB. The tangent to the circumcircle of
ABC at C meets the line passing through I and parallel to AB at point P .
Let H be the orthocenter of triangle PAB. Prove that lines CH and PM

meet at the incircle of triangle ABC.
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Solution. Since the quadruple A, B, H, P is orthocentric we obtain that
H lies on the polar of P with respect to the circle with diameter AB, i.e.
the circumcircle of ABC. It is clear that C also lies on this polar, therefore
MP ⊥ CH. Prove that CH passes through the homothety center Q of the
incircle and the circumcircle of ABC.

Let S be the midpoint of arc AB of the circumcircle, T be the projection of
M to PI, and T ′ be the reflection of T about the circumcircle. Since T and
C lie on the circle with diameter MP , we obtain that T ′ lies on the inversion
image of this circle — the line CH. Note that T ′, C, Q lie on lines MS,
SI, MI respectively and T ′M : T ′S = R2/r : (R2/r + R) = R : (R + r),
CS : CI = (R+r) : r (because SI = SA = SB = R

√
2), QI : QM = r : R.

By the Menelaos theorem Q, T ′, C are collinear.

Now let F be the Feuerbach point of triangle ABC. Since MC is a diameter
of nine-points circle, points C, Q, F are the pairwise homothety centers
of three circles: the nine-points circle, the circumcircle, and the incircle.
Therefore F lies on CH and since ∠CFM = 90◦, we obtain that F is
the common point of CH and MP (fig. 10.7).
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8. (M.Didin) On the attraction "Merry parking" the auto has only two positions
of a steering wheel: "right" and "strongly right" . So the auto can move along
an arc with radius r1 or r2. The auto started from a point A to the Nord, it
covered the distance l and rotated to the angle α < 2π. Find the locus of its
possible endpoints.

Solution. Since the length of the trajectory and the rotation angle are known
we can find the sum of arc of each radius. Hence reformlate the problem.

A point A and a ray ℓ with origin A are given on the plane. Also two numbers
r1 > r2 and two angles α1, α2, α1 + α2 < π are given. Find the locus of the
endpoints B of the following trajectories Γ:

- Γ has the begin point A and touches ℓ at A;
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- Γ is the union of arcs with radii r1 and r2, and the sums of angle measures
of these arcs are equal to 2α1 and 2α2 respectively;

- two adjacent arcs have the common tangent at their common endpoint and
lie on the same side of this tangent.

Answer. Let O1, O2 be the endpoints of arcs satisfying to the first condition
with radii r1, r2 respectively and angle measures 2(α1 + α2). Consider two
discs W1, W2 centered at O1, O2 with radii 2(r1− r2) sinα2, 2(r1− r2) sinα1

respectively. The required locus is the intersection of these discs.

Proof. Let PQ be an arbitrary arc of Γ with radius r1, and R be a point
of segment PQ such that PR : PQ = r2 : r1. An arc PR touching Γ at
P has radius r2 and the tangent to it at R is parallel to the tangent to Γ
at Q. Replace the arc PQ to PR and translate the part QB of Γ to Q⃗R.
Repeating this operation for each arc with radius r1 we translate B to O2, and
⃗O2B =

r1 − r2
r1

∑
⃗PiQi. Similarly ⃗O1B =

r2 − r1
r2

∑
⃗QiPi+1 (we suppose

that Q0 = A, Pn+1 = B).

Put off all arcs of Γ on the unit circle starting from point X. The endpoint of
the last arc is a point Y such that ⌣ XY = 2(α1+α2) and the homothety H
with coefficient 1/(r1−r2) maps vector O1O2 to XY . Color all arcs obtained
from the arcs with radius r1 red, and color blue the remaining arcs. Compare
to each arc the vector from its begin point to the endpoint. The homothety
H maps vector O2B to the sum of red vectors and maps BO1 to the sum
of blue vectors. Let Z be a point on arc XY such that ⌣ XZ = 2α1. The
homothety H maps the boundary circles of W2 and W1 to the circles centered
at X, Y respectively and passing through Z.

Prove that the length of O2B is maximal if the red vector is unique. Let the
tangent m to the unit circle parallel to O2B toche the circle at E. Consider
an arc T with length 2α1 and midpoint E. If the endpoints of T lie on red
arcs divide these arcs into two parts. The projection to m of a red vector
with length φ lying outside T is less than φ cosα1, therefore the sum of
projections to m of all red vectors is less than the projection of T . Similarly
the length of O1B is maximal if the blue vector is unique. Thus B lies inside
the intersection of two discs.

Clearly the common points of boundary circles of W1 and W2 correspond to
the trajectories containing exactly one arc of each radius, and the points of
these circles correspond to the trajectories containing one arc of some radius
and two arc of the remaining one. Prove that each point B inside both discs
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correspond to the unique trajectory containing four arc and starting from
the arc with radius r1.

Let D be the image of B in homothety H. Find on arc XY such points
E, F , G that X⃗E + F⃗G = X⃗D. Let E, G be the common points of the
perpendicular bisector to DZ with arcs XZ, Y Z, and F be the second
common point of arc XY with the line passing through Z and parallel to
EG. Then DEFG is a parallelogram which is equivalent to the required
equality. It is easy to see that E, F , G are uniquely defined by D (fig. 10.8).
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Fig. 10.8.

.
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