
XVII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The correspondence round. Solutions

1. (I.Kukharchuk, 8) Let ABC be a triangle with ∠C = 90◦. A line joining the midpoint of
its altitude CH and the vertex A meets CB at point K. Let L be the midpoint of BC,
and T be a point of segment AB such that ∠ATK = ∠LTB. It is known that BC = 1.
Find the perimeter of triangle KTL.

Answer. 1.

Solution. Let M , N be the reflections of L about AB and AC respectively. Then
AM = AL = AN and ∠MAN = 2∠BAC. Since AK and AL are the medians of
right-angled triangles ABC and ACH, we obtain that ∠CAK = ∠LAB and ∠NAK =
∠NAC + ∠CAK = ∠CAL + ∠LAB = ∠BAC. Thus AK bisects angle MAN , and
KM = KN (fig. 1). On the other hand, KM = KT + TL, i.e. the perimeter of triangle
KTL equals KM +KL = NL = BC = 1.
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2. (D.Shvetsov, 8) A perpendicular bisector to the side AC of triangle ABC meets BC, AB
at points A1 and C1 respectively. Points O, O1 are the circumcenters of triangles ABC
and A1BC1 respectively. Prove that C1O1 ⊥ AO.

Solution. We consider the case when triangle ABC is acute, and the other cases when it is
right or obtuse are analogous. Since ∠AOC = 2∠ABC = 2(180◦−∠A1BC1) = ∠A1O1C1,
we get that triangles AOC and C1O1A1 are similar and identically oriented. Thus each
pair of corresponding sides in them forms the same angle (fig. 2). Since corresponding
sides AC and A1C1 are perpendicular, so are corresponding sides AO and C1O1.
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3. (D.Shvetsov, 8) Altitudes AA1, CC1 of acute-angled triangle ABC meet at point H; B0

is the midpoint of AC. A line passing through B and parallel to AC meets B0A1, B0C1

at points A′, C ′ respectively. Prove that AA′, CC ′, and BH concur.

Solution. Let BB1 be the altitude from B. By Thales’ theorem, line AA′ divides segment
BB1 in ratio BA′ : AB1, and line CC ′ divides the same segment in ratio BC ′ : CB1

(fig. 3). We want to prove that these two ratios are equal. Again by Thales’ theorem,
BA′ : CB0 = BA1 : A1C and BC ′ : AB0 = BC1 : C1A. Since AB0 = CB0, the required
assertion becomes equivalent to AB1 : B1C = (AC1 : C1B) · (BA1 : A1C). This follows
immediately by Ceva’s theorem for AA1, BB1, and CC1.
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4. (Tran Quang Hung, 8) Let ABCD be a square with center O, and P be a point on the
minor arc CD of its circumcicle. The tangents from P to the incircle of the square meet
CD at points M and N . The lines PM and PN meet segments BC and AD respectively
at points Q and R. Prove that the median of triangle OMN from O is perpendicular to
the segment QR end equals to its half.
Solution. The lines PR and PQ are sidelines of a square having the same circumcircle
and incircle as ABCD. Hence the rotation by 90◦ around O maps M and Q onto R and
N respectively, i.e., OM = OP , ON = OQ, and ∠POM = ∠NOQ = 90◦. Thus if S is
a vertex of parallelogram MONS, then the triangles OMS and POQ are congruent and
their corresponding sidelines are perpendicular (fig. 4).
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Comment. Also it is easy to see that ∠RON = ∠NOM = ∠MOQ = 45◦.

5. (M.Saghafian, 8–9) Five points are given in the plane. Find the maximum number of
similar triangles whose vertices are among these five points.
Answer. Eight.
Example. The center and the vertices of a square.
Proof of the upper bound. First let us describe all configurations of four points such
that the four triangles determined by them are pairwise similar. Let A, B, C, and D be
such four points. Without loss of generality, there are two cases to consider.
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1. Point A lies inside triangle BCD. Suppose without loss of generality that angle B
is the greatest angle of triangle BCD. Then angle CAD is greater than every angle of
triangle BCD, and so triangles ACD and BCD cannot be similar. We have arrived at a
contradiction.

2. Quadrilateral ABCD is convex. We split this case into two subcases as follows.

2.1. Diagonal AC bisects angle BAD, and similarly for vertices B, C, and D. Then
ABCD must be a rhombus, and so triangles ABC and BCD are similar if and only if
ABCD is a square.

2.2. There is at least one vertex of ABCD such that the diagonal from it does not bisect
the interior angle at it, say A. Then angles BAC, CAD, and BAD are pairwise distinct.
Thus they must be the three angles of every one of our four similar triangles. Therefore
they sum to 180◦, and so ∠BAD = 90◦.

Since we have four similar triangles, we must also have four right angles and eight acute
angles determined by our four points. Hence angles BAC, CAD, ABD, CBD and so on
cannot be right because then we would get at least one obtuse angle at the corresponding
vertex of ABCD. The only option left for angles BAD, ABC, BCD, and ADC is to be
right.

In both cases 2.1 and 2.2, we obtain that if four points determine four pairwise similar
triangles then these points are the vertices of a rectangle.

Now let us return to the problem. We say that a triangle is bad if it is determined by
three of our five points but is not in our set of similar triangles. (In particular, three
collinear points form a bad degenerate triangle.) Our goal is to prove that we have at
least two bad triangles.

Observe that, given three of the vertices of a rectangle, we can always reconstruct the
fourth vertex uniquely. Thus among our points there is at most one quadruple that
forms a rectangle. Among the remaining four quadruples, each must contain at least one
bad triangle by the above discussion. Since every bad triangle is counted in exactly two
quadruples, we get at least 4/2 = 2 bad triangles as needed.

6. (I.Kukharchuk, 8–9) Three circles Γ1, Γ2, Γ3 are inscribed into an angle (the radius of Γ1

is the minimal, and the radius of Γ3 is the maximal) in such a way that Γ2 touches Γ1

and Γ3 at points A and B respectively. Let l be a tangent at A to Γ1. Consider circles
ω touching Γ1 and l. Find the locus of meeting points of common internal tangents to ω
and Γ3.

Answer. The circle Γ2 and the segment AB with the exception of points A and B.

Solution. If ω touches Γ1 and l at point A, then the common internal tangents meet on
AB, and any internal point of the segment can be obtained.

Let ω touche l at point P distinct from A, and let r, r1, r3 be the radii of ω, Γ1, Γ3

respectively. Then AP = 2
√
rr1, AB = 2

√
r1r3.

The internal homothety center of ω and Γ3 lies on segment PB. Let H be the projection
of A onto this segment. Then PH : BH = PA2 : AB2 = r : r3. Therefore H is the
desired common point of tangents (fig. 6). Clearly H lies on Γ2, and any point of this
circle distinct from A and B can be obtained in such a way.
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7. (Tran Quang Hung, 8–9) The incircle of triangle ABC centered at I touches CA, AB
at points E, F respectively. Let points M , N of line EF be such that CM = CE and
BN = BF . Lines BM and CN meet at point P . Prove that PI bisects segment MN .

Solution. By Ceva’s theorem for triangle IMN , it suffices to prove that line BM divides
segment IN in the same ratio as line CN divides segment IM . (Possibly in both cases
the lines divide the segments externally.)

The first ratio equals SBIM : SBMN , and the second ratio equals SCIN : SCMN .

Observe that triangles AEF , BFN , and CEM are similar and isosceles. Thus SBMN :
SCMN = d(B,MN) : d(C,MN) = BF : CE = BD : DC, where D is the tangency point
of the incircle with side BC.

Next up, again from triangles AEF , BFN , and CEM being similar we get AB ∥ CM
and AC ∥ BN . Together with BD = BN and CD = CM , by a straightforward angle
chase this implies that DM ∥ BI and DN ∥ CI. Hence SBIM = SBID and SCIN = SCID

(fig. 7). Therefore SBIM : SCIN = SBID : SCID = BD : DC. The solution is complete.
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8. (P.Ryabov, 8–9) Let ABC be an isosceles triangle (AB = BC), and l be a ray from B.
Points P and Q of l lie inside the triangle in such a way that ∠BAP = ∠QCA. Prove
that ∠PAQ = ∠PCQ.

Solution. Let R be the isogonal conjugate of P in triangle ABC, and let Q′ be the
reflection of R across the axis of symmetry of triangle ABC. Then ∠ABQ′ = ∠CBR =
∠ABP = ∠ABQ and ∠ACQ′ = ∠CAR = ∠BAP = ∠ACQ. Therefore points Q and
Q′ coincide. Consequently, ∠CAQ = ∠ACR = ∠BCP (fig. 8). Thus (we consider the
case when points B, P , and Q appear in this order along ray l; the opposite case when
they appear in the order B, Q, and P , is analogous) ∠PAQ = ∠A−∠BAP −∠CAQ =
∠C − ∠ACQ− ∠BCP = ∠PCQ as needed.
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9. (I.Kukharchuk, 8–9) Points E and F lying on sides BC and AD respectively of a paral-
lelogram ABCD are such that EF = ED = DC. Let M be the midpoint of BE, and
MD meet EF at G. Prove that ∠EAC = ∠GBD.

Solution. Let lines AD and BG meet at H. Since lines BE and FH are parallel, and
GM is a median in triangle BEG, we also have that GD is a median in triangle GFH.
Then, since lines CE and DFH are parallel and CD = DE = EF , we get that all three
of these segments are equal to segment CH as well.

Consider triangles ACE and BHD. We already know that CE = DH. Since AB =
CD = DE and AD ∥ BE, quadrilateral ABED is an isosceles trapezoid, and so also
AE = BD. Finally, since AB = CD = CH and AH ∥ BC, quadrilateral ABCH is an
isosceles trapezoid as well, and so AC = BH too.

Thus triangles ACE and BHD are congruent (fig. 9). Therefore ∠CAE = ∠HBD =
∠GBD as needed.
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10. (L.Emelyanov, 8–9) Prove that two isotomic lines of a triangle cannot meet inside its
medial triangle. (Two lines are isotomic lines of triangle ABC if their common points
with BC, CA, AB are symmetric with respect to the midpoints of the corresponding sides.)

First solution. Let our triangle be ABC, and let the midpoints of its sides be K, L,
and M , with A opposite to K, B opposite to L, and C opposite to M .

Let ℓ be one of our two lines. If ℓ does not intersect the interior of triangle ABC then
there is nothing to prove. Otherwise ℓ must meet two of segments AB, BC, and CA in
interior points; say, AB and AC at points P and Q. Take points P ′ and Q′ so that M and
L are the midpoints of segments PP ′ and QQ′ respectively. Then the isotomic conjugate
of line ℓ is line P ′Q′ which we denote ℓ′.

Suppose that P and Q lie in segments AM and AL respectively. Then ℓ does not meet
the interior of triangle KLM , and we are done. Analogously, if P and Q lie in segments
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BM and CL respectively then P ′ and Q′ lie in segments AM and AL respectively, and
ℓ′ does not meet the interior of triangle KLM instead.

Without loss of generality, we are left to consider the case when P lies in segment AM
and Q lies in segment CL. Then P ′ lies in segment BM and Q′ lies in segment AL. We
claim that in this case lines ℓ and ℓ′ meet inside triangle ALM .

Let lines ℓ and ℓ′ meet segment LM at points X and Y respectively (fig. 10). To prove
our claim, it suffices to show that points L, X, Y , and M appear in this order along line
LM .

A

BC

L X

K

Y M

P

P ′

Q

Q′

Рис. 10

By Menelaus’ theorem for triangle ALM and line ℓ, we get that LX : XM = (LQ :
QA) · (AP : PM). Analogously, by Menelaus’ theorem for triangle ALM and line ℓ′ we
get that LY : YM = (LQ′ : Q′A) · (AP ′ : P ′M) = (LQ : Q′A) · (AP ′ : PM). Since
QA > Q′A and AP < A′P , we conclude that LX : XM < LY : YM , and the solution is
complete.

Second solution. Suppose that the common point S of given lines lies inside the medial
triangle. Then there exists an affine map transforming A, B, C, S into A′, B′, C ′, and
the circumcenter of triangle A′B′C ′. The images of the given lines are also isotomic,
hence they are symmetric about the perpendicular bisector to any side. Clearly this is
impossible.

Comment. This reasoning also yields that two isotomic lines cannot meet inside any
angle vertical to an angle of medial triangle.

11. (A.Zaslavsky, 8–9) The midpoints of four sides of a cyclic pentagon were marked, after
this the pentagon was erased. Restore it.

Solution. Let K, L, M , N be the given midpoints of sides AB, BC, CD, DE of pentagon
ABCDE inscribed into circle Ω centered at O. Construct parallelograms NMLP and
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KLMQ. The triangles KLP and ACE are homothetic with center B and coefficient 1/2.
Therefore the segment BO is a diameter of the circumcircle of triangle KLP . Similarly
O lies on the circumcircle of triangle MNQ (fig. 11). This we can construct the point O,
the vertex B, and finally the desired pentagon.
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Comment. The circles KLP and MNQ meet at two points, and the pentagon can
be constructed using each of them. If both pentagons are convex the problem has two
solutions. Otherwise the desired pentagon is unique.

12. (E.Bakaev, 8–10) Suppose we have ten coins with radii 1, 2, 3, . . . , 10 cm. We can put two
of them on the table in such a way that they touch each other, after that we can add the
coins in such a way that each new coin touches at least two of previous ones. The new
coin cannot cover a previous one. Can we put several coins in such a way that the centers
of some three coins are collinear?

Solution. Let us try to find a construction with four coins (clearly three coins are
insufficient). Place the coins with radii a, b, x, and y so that all pairs among them are
externally tangent, except for pair x and y. Let Or be the center of the coin with radius r.
By the cosine theorem for triangle OaObOx, we get cos∠ObOaOx = ((a+b)2+(a+x)2−(b+
x)2)/2(a+b)(a+x). Analogously, cos∠ObOaOy = ((a+b)2+(a+y)2−(b+y)2)/2(a+b)(a+
y). For centers Oa, Ox, and Oy to be collinear, it is necessary and sufficient that these two
cosines sum to zero. This is equivalent to (b− a)(ax+ ay + 2xy) = a(a+ b)(2a+ x+ y).
By trial and error, we find the solution a = 2, b = 5, x = 3, and y = 8. (Then the two
cosines equal 1/7 and -1/7, fig. 7.)
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Fig. 12

Comments (N.Beluhov). 1. An exhaustive computer search shows that there is only
one more configuration with four coins that works. It is given by a = 3, b = 8, x = 5,
and y = 9, where the two cosines equal 1/11 and -1/11. (There are many other ordered
quadruples a, b, x, and y that solve our Diophantine equation, but none of them have
pairwise distinct numbers.)

2. With coins of radii 1, 2, . . . , 16, there is the following construction which does not
involve any trial and error. Place the coins with radii 1, 2, 4, 8, and 16 so that the
following pairs are externally tangent: 1—2, 1—4, 2—4, 2—8, 4—8, 4—16, and 8—16.
Then triangles O1O2O4, O2O4O8, and O4O8O16 are pairwise similar, and so ∠O1O4O16 =
∠O1O4O2+∠O2O4O8+∠O8O4O16 = 180◦ because it equals the sum of the interior angles
of any one of our three similar triangles.

13. (A.Mudgal, 9–11) In triangle ABC with circumcircle Ω and incenter I, point M bisects
arc BAC and line AI meets Ω at N ̸= A. The excircle opposite to A touches side BC at
point E. Point Q ̸= I on the circumcircle of △MIN is such that QI ∥ BC. Prove that
the lines AE and QN meet on Ω.

Solution. Let ω be the mixtilinear incircle opposite to A. (That is, the circle tangent
to segments AB and AC and also to Ω internally.) Let ω and Ω touch at T . We use two
well-known lemmas about the mixtilinear incircles:

Lemma 1. Rays AE and AT are isogonal in angle A.

Lemma 2. Points M , I, and T are collinear.

From these two lemmas, we can derive the problem statement rather easily as follows.
Let line AE meet Ω again at X. By Lemma 1, lines BC and TX are parallel. Thus lines
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IQ and TX are parallel as well. Using Lemma 2 we conclude that ∠MNQ = ∠MIQ =
∠MTX = ∠MNX. Therefore X lies on NQ as needed (fig. 13).
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Fig. 13

14. (P.Agarwal, 9–11) Let γA, γB, γC be excircles of triangle ABC, touching the sides BC,
CA, AB respectively. Let lA denote the common external tangent to γB and γC distinct
from BC. Define lB, lC similarly. The tangent from a point P of lA to γB distinct from
lA meets lC at point X. Similarly the tangent from P to γC meets lB at Y . Prove that
XY touches γA.

Solution. Lemma. Let ω be any circle, and let m and n be two lines tangent to it.
Consider the mapping f from m to n defined as follows: For every point P of m, f(P ) = Q
is the intersection point of n with the second tangent from P to ω. Then f is projective.

Proof. Let O be the center of ω. Then the oriented angle that goes counterclockwise
from line OP to line OQ is constant when P varies over m. Thus for every four points P1,
P2, P3, and P4 on m with f(Pi) = Qi for all i, we have that rotation about O maps lines
OP1, OP2, OP3, and OP4 onto lines OQ1, OQ2, OQ3, and OQ4. Therefore the cross-ratios
(P1P2P3P4) and (Q1Q2Q3Q4) are equal. This completes the proof of the Lemma.

For the problem, define fA as in the Lemma for circle γA and tangent lines lB and lC ,
with the mapping going from lB to lC . Define fB and fC cyclically. Our goal is to prove
that the composition of fA, fB, and fC is the identity mapping. Since, by the Lemma,
this composition is projective, it suffices to find three special cases where this holds. That
is, we need to find three points P on line lB such that fC(fB(fA(P ))) = P . The points
where the sides of triangle ABC meet line lB all work.

15. (A.Mudgal, N.V.Tejaswi, 9–11) Let APBCQ be a cyclic pentagon. A point M inside tri-
angle ABC is such that ∠MAB = ∠MCA, ∠MAC = ∠MBA and ∠PMB = ∠QMC =
90◦. Prove that AM , BP , and CQ concur.

11



Solution. Let k be the circumcircle of APBCQ, and let line AM meet k again at N .
By the given conditions, triangles AMB and CMA are similar. Since ∠BCN = ∠BAM
and ∠CBN = ∠CAM , both of them are similar to triangle CNB as well.

By the aforementioned similarities, AB : AC = BM : AM = BN : NC. Thus quadrilat-
eral ABNC is harmonic and M is the midpoint of AN .

Next up, we claim that APNQ is harmonic as well. To see this, let line PM meet k
again at R. Then angle NMR = 90◦ − ∠BMN and ∠AMQ = ∠AMC − 90◦. Since
∠BMN + ∠AMC = ∠BAC + ∠BNC = 180◦, from this we obtain that ∠NMR =
∠AMQ. Together with AM = MN , this implies that points Q and R are symmetric
with respect to the perpendicular bisector of segment AN. Therefore ⌣ AQ =⌣ NR
(fig. 15), and so ∠MPN = ∠NPR = ∠APQ = ∠ANQ = ∠MNQ. Analogously,
∠MQN = ∠AQP = ∠MNP . Consequently, triangles APQ, MPN , and MNQ are
pairwise similar. From here, we establish that APNQ is harmonic, exactly as for ABNC.
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Fig. 15

We are ready to finish the solution. Line BP divides segment AN externally in ratio
SBAP : SBNP = (AB · AP ) : (BN · PN). Analogously, line CQ divides segment AN
externally in ratio (AC · AQ) : (CN · QN). Since both of ABNC and APNQ are
harmonic, these ratios are equal, and the solution is complete.

16. (P.Bibikov, 9–11) Let circles Ω and ω touch internally at point A. A chord BC of Ω
touches ω at point K. Let O be the center of ω. Prove that the circle BOC bisects
segment AK.
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Solution. Let M be the midpoint of AK, and let the common tangent to ω and Ω at
A meet line BC at point X. Then XA2 = XB · XC; furthermore XA2 = XM · XO
because both of XA and XK are tangents to ω, and so triangles XMA and XAO are
similar. Thus XB ·XC = XM ·XO, and so quadrilateral BOMC is cyclic (fig. 16).
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Fig. 16

17. (S.Sevastyanov, 9–11) Let ABC be an acute-angled triangle. Points A0 and C0 are the
midpoints of minor arcs BC and AB respectively. A circle passing through A0 and C0

meets AB and BC at points P and S, Q and R respectively (all these points are distinct).
It is known that PQ ∥ AC. Prove that A0P + C0S = C0Q+ A0R.

Solution. Suppose that AB ̸= BC (the opposite case is clear). Let t be the tangent to
the circumcircle of ABC at B, and let X be the intersection point of lines t and A0C0.
Observe that A0C0 is the radical axis of circles ABC and PRSQ, PQ is the radical axis
of circles BPQ and PRSQ, and (since PQ ∥ AC) t is the radical axis of circles ABC
and BPQ. Therefore X is the radical center of these three circles, and so X lies on PQ.
Furthermore A0C0 forms equal angles with AC and t, i.e., bisects angle BXP . And since
the incenter I of ABC is the reflection of B about A0C0, I lies on PQ. Now IQ = QC,
IA0 = A0C, thus A0Q passes through the midpoint B0 of arc AC. Similarly C0P passes
through B0.

Finally ∠RA0P = ∠RQP = ∠C, ∠PRA0 = ∠PC0A0 = (π − ∠C)/2. Therefore A0P =
A0R (fig. 17). Similarly C0Q = C0S which solves the problem.
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18. (N.Beluhov, 10–11) Let ABC be a scalene triangle, AM be the median through A, and ω
be the incircle. Let ω touch side BC at point T , and segment AT meet ω for the second
time at point S. Let δ be the triangle formed by lines AM and BC and the tangent to ω
at S. Prove that the incircle of triangle δ is tangent to the circumcircle of triangle ABC.

First solution. Let D be any point on segment BC. The two circles inscribed in ∠ADB
and ∠ADC and internally tangent to the circumcircle of triangle ABC are known as the
Thebault circles for cevian AD. We will make use of two theorems about Thebault circles
(see [1]).

1. The second common exterior tangent of two Thebault circles is also tangent to ω.

2. Let E be the intersection point of segment AD and the second common exterior
tangent of two Thebault circles. Then point E lies on the tangent to ω parallel to side
BC.

Let U be the point of ω opposite to T . We have to prove that the tangents to ω at U and
S meet on AM . Let the tangent at U meet the tangent at S and the line AT at points
V and W respectively. Since ∠USW = π/2 and UV = V S, we obtain that V is the
midpoint of UW . But AU meets BC at its touching point with the excircle symmetric
to T with respect to M , thus AM passes through V (fig. 18).
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Second solution. Let σ be the incircle of triangle δ and, for any point X outside of σ,
let tX be the length of the tangent from X to σ. Suppose without loss of generality that
AB < AC. By Casey’s theorem for the circumcircle of triangle ABC, circles A, B, and
C of zero radius, and circle σ, it suffices to prove that atA + btB − ctC = 0.

Let the tangent t to ω parallel to side BC meet segments AM and AT at points K and
P respectively. Let TQ be a diameter in ω. (Thus Q is also the tangency point of t and
ω.) As in the first solution we obtain that segment SK is a median to the hypotenuse in
right-angled triangle PSQ. Therefore ∠KSQ = ∠KQS and so segment KS is tangent
to ω. Let lines BC and KS meet at L. Then δ coincides with triangle KLM .

We have that

2tA = 2(AK + tK) = 2AK + (KL+KM − LM) = 2AK +KS +KM −MT,

2tB = 2(tL −BL) = (KL+ LM −KM)− 2BL

= (KL−BL) + (LM −BL)−KM = KS +BT +BM −KM, and
2tC = 2(CM + tM) = 2CM + (KM + LM −KL) = BC +KM +MT −KS.

Therefore

2(atA + btB − ctC) =

= 2aAK − (−a+ b+ c)KM + (a+ b+ c)KS − (a+ c)MT+

+ b · a− b+ c

2
+ b · a

2
− ca.

We have that KP = KS and

AK : AM = KP : MT = r : rA,
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where r and rA are the radii of ω and ωA respectively, since the homothety with center
A that maps ω onto ωA also maps triangle AKP onto triangle AMT .

On the other hand, for the lengths of the tangents from A to circles ω and ωA, we get
that

r : ra = (−a+ b+ c) : (a+ b+ c).

Therefore

AK : KM = (−a+ b+ c) : 2a and
KS : MT = (−a+ b+ c) : (a+ b+ c),

and so

2aAK − (−a+ b+ c)KM + (a+ b+ c)KS − (a+ c)MT =

= (−2a+ b)MT = (−2a+ b) · b− c

2
.

We are left to prove that

(−2a+ b) · b− c

2
+ b · a− b+ c

2
+ b · a

2
− ca = 0,

and this is indeed a correct identity for arbitrary real numbers a, b, and c. The solution
is complete.

19. (Tran Quang Hung, 10–11) A point P lies inside a convex quadrilateral ABCD. Common
internal tangents to the incircles of triangles PAB and PCD meet at point Q, and
common internal tangents to the incircles of triangles PBC and PAD meet at point R.
Prove that P , Q, R are collinear.

Solution. Let the incircles of triangles APB, BPC, CPD, and DPA be ω1, ω2, ω3, and
ω4.

The case when P is the intersection point of lines AC and BD is clear because then points
P , Q, and R coincide. Thus in the sequel we assume that P lies outside of at least one
of lines AC and BD. Then P ̸= Q and P ̸= R.

Lemma 1. Let Γ1 be any circle inscribed in angle APB, and let Γ3 be any circle inscribed
in angle CPD. Let the two common interior tangents of Γ1 and Γ3 meet at X. Then
points P , Q, and X are collinear.

Proof. Let the two common interior tangents of Γ1 and ω3 meet at T . Observe that P is
the exterior homothety center of ω1 and Γ1, Q is the interior homothety center of ω1 and
ω3, and T is the interior homothety center of Γ1 and ω3. By the three homothety centers
theorem, points P , Q, and T are collinear. Furthermore, since P lies outside of at least
one of lines AC and BD, we have P ̸= T , and so lines PQ and PT are both well-defined
and coincide.

Next up, observe that P is the exterior homothety center of ω3 and Γ3 and X is the
interior homothety center of Γ1 and Γ3. By the three homothety centers theorem, points
P , T , and X are collinear. Furthermore, since P lies outside of at least one of lines AC
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and BD, we have P ̸= X, and so lines PT and PX are both well-defined and coincide.
This completes the proof of Lemma 1.

Analogously to Lemma 1, let Γ2 be any circle inscribed in angle BPC and let Γ4 be any
circle inscribed in angle DPA. Let the two common interior tangents of Γ2 and Γ4 meet
at Y . Then points P , R, and Y are collinear. Furthermore, from the proof of Lemma 1
we know that both lines PR and PY are well-defined and coincide.

Therefore to solve the problem it suffices to find four circles Γ1, Γ2, Γ3, and Γ4 such that
points P , X, and Y are collinear.

Choose points A′, B′, C ′, and D′ on rays PA, PB, PC, and PD such that PA′ = PB′ =
PC ′ = PD′, and let Γ1, Γ2, Γ3, and Γ4 be tangent to rays PA, PB, PC, and PD at
points A′, B′, C ′, and D′.

Lemma 2. Let lines A′C ′ and B′D′ meet at Z. Then for this choice of circles Γ1, Γ2, Γ3,
and Γ4, we get that both of X and Y coincide with Z.

Proof. We prove that X coincides with Z, and for Y the proof is analogous. Let line
A′C ′ meet Γ1 and Γ3 for the second time at U and V , and let line B′D′ meet Γ3 for the
second time at W . We claim that triangles A′UB′ and V C ′W are homothetic.

We consider the case when point U is on the greater arc A′B′, point V is on the lesser
arc C ′D′, and point W is on the greater arc C ′D′ (fig. 19). All other configurations are
analogous.

A′

B′

C ′

D′

U

V

W

P

Fig. 19
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Clearly, sides A′U and C ′V are parallel as they lie on the same line.

Then (since A′B′C ′D′ is inscribed into a circle centered at O) ∠B′A′C ′ = ∠B′D′C ′ =
π − ∠C ′D′W = π − ∠C ′VW , and so sides A′B′ and VW are parallel as well.

Finally, ∠UB′Z = π − ∠B′UZ − ∠B′ZU = π − ∠A′UB′ − ∠A′ZB′ = π − ∠A′B′P −
∠A′ZB′ = ∠C ′D′P = ∠C ′WD′. Thus sides B′U and C ′W are parallel as well.

Consequently, triangles A′UB′ and V C ′W are indeed homothetic. Therefore Z is their ho-
mothety center and hence also the interior homothety center of Γ1 and Γ3. This completes
the proof of Lemma 2.

Clearly, Lemma 2 implies the statement of the problem. The solution is complete.

Comment 1. From the solution it is clear that the problem can be generalised as follows:
Instead of the incircles of triangles APB, BPC, CPD, and DPA, we can take any four
circles inscribed in angles APB, BPC, CPD, and DPA, and the problem statement still
holds.

Comment 2. Here is an alternative proof of Lemma 2. Let K, L, M , and N be the
centers of Γ1, Γ2, Γ3, and Γ4. Then convex quadrilateral KLMN is circumscribed about
a circle Ω with center P and radius PA′ = PB′ = PC ′ = PD′ that touches its sides at
points A′, B′, C ′, and D′. By a well-known theorem about circumscribed quadrilaterals,
the diagonals KM and LN and chords A′C ′ and B′D′ of Ω are concurrent, and their
concurrency point divides each diagonal of KLMN in the same ratio as the ratio of
the tangents from the endpoints of that diagonal to Ω. The latter claim is equivalent to
Lemma 2.

20. (N.Beluhov, 10–11) The mapping f assigns a circle to every triangle in the plane so that
the following conditions hold. (We consider only nondegenerate triangles and circles of
nonzero radius.)

(a) Let σ be any similarity in the plane and let σ map triangle ∆1 onto triangle ∆2. Then
σ also maps circle f(∆1) onto circle f(∆2).

(b) Let A, B, C, and D be any four points in general position. Then circles f(ABC),
f(BCD), f(CDA), and f(DAB) have a common point.

Prove that for any triangle ∆, the circle f(∆) is the Euler circle of ∆.

Solution. By a well-known theorem, for any four points A, B, C, and D in general
position the Euler circles of triangles ABC, BCD, CDA, and DAB have a common
point. That is, the mapping which assigns to every triangle its Euler circle does indeed
satisfy both (a) and (b).

Let us say that a triangle ∆ is well-behaved if f(∆) is the Euler circle of ∆. Our goal is
to prove that all triangles are well-behaved. Given any four points A, B, C, and D in
general position, we call any common point of f(ABC), f(BCD), f(CDA), and f(DAB)
a witness for A, B, C, and D.

Lemma 1. Every equilateral triangle is well-behaved.

Proof. Let ABC be any equilateral triangle and let O be its center. By (a), rotation by
120◦ about O must preserve f(ABC). Therefore O is the center of f(ABC).

Let P be any witness for A, B, C, and O. Then P ̸= O. Let Q and R be such that PQR
is an equilateral triangle centered at O. By (a) and ±120◦ rotation about O, both of Q
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and R are witnesses for A, B, C, and O as well. Consequently, O is also the center of
f(AOB).

Let D be such that ABCD is a rhombus and let S be any witness for A, B, C, and D. By
(a), the circles f(ABC) and f(ACD) are symmetric with respect to line AC. Since the
center O of f(ABC) lies outside of line AC, this means that S lies on line AC. Similarly,
S must lie on line BD as well. Therefore S is the midpoint of AC. �
Lemma 2. Let ABC be any isosceles triangle with AB = AC. Then the center of
f(ABC) lies on the perpendicular bisector of side BC.

Proof. By (a) and reflection across the perpendicular bisector of side BC. �
Lemma 3. Let ABC be any triangle. Then the midpoints of its sides AB, BC, and CA
lie either inside or on f(ABC).

Proof. Suppose for the sake of contradiction that the midpoint M of side AC lies outside
of f(ABC). Then there exists some line ℓ through M such that ℓ does not meet f(ABC).
Let D be such that ABCD is a parallelogram. Then, by (a), ℓ separates f(ABC) and
f(ACD). This contradicts (b) for A, B, C, and D. �
Lemma 4. Let ABC be any isosceles triangle with AB = AC and ∠A ≤ 30◦. Then
f(ABC) is tangent to BC at its midpoint, and it lies on the same side of line BC as
point A.

Proof. Let D be such that A and D lie on the same side of line BC and triangle BCD
is equilateral. Let M be the midpoint of BC, let N be the midpoint of AM , and let k be
the circle on diameter MN .

By Lemma 1 and ∠A ≤ 30◦, f(BCD) lies inside k, except that they are tangent at M .
By Lemmas 2 and 3, k lies inside of f(ABC), except that they could be tangent at M .
Therefore M is the only possible witness for A, B, C, and D. �
Lemma 5. Let ABC be any isosceles triangle with AB = AC and ∠A ≥ 150◦. Then
f(ABC) is tangent to BC at its midpoint, and it lies on the same side of line BC as
point A.

Proof. Let D be such that ABDC is a rhombus. By Lemma 4 for ABD and ACD, the
only possible witness for A, B, C, and D is the common midpoint of AD and BC. Then
we finish by Lemmas 2 and 3 for ABC, just as in the proof of Lemma 4. �
Lemma 6. Every acute-angled triangle ABC with ∠A ≤ 15◦, ∠B ≥ 75◦, and ∠C ≥ 75◦

is well-behaved.

Proof. Let D be the reflection of A across line BC. By Lemma 5, 75◦ ≤ ∠B < 90◦, and
75◦ ≤ ∠C < 90◦, we get that the projection P of A onto line BC is the unique common
point of f(ABD) and f(ACD). By (b), P lies on f(ABC). Similarly (from Lemmas 4
and 5), so do the projections Q of B onto line CA and R of C onto line AB. Therefore
f(ABC) is the circumcircle of triangle PQR. �
Lemma 7. Let ABC be any triangle. Suppose that there exists some disc D such that
for all D ∈ D both triangles ABD and ACD are well-behaved. Then triangle ABC is
well-behaved as well.

Proof. Suppose for the sake of contradiction that ABC is not well-behaved. Then
f(ABC) and the Euler circle e of ABC have at most two common points.
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By shrinking D if necessary, we can ensure that for all D ∈ D the midpoint M of AD
does not lie on e, and the Euler circles e1 and e2 of ABD and ACD are distinct. Thus
e1 and e2 meet at M as well as one more point N which, since the Euler circle mapping
satisfies condition (b) of the problem, must lie on e.

However, by shrinking D even more if necessary, we can ensure that M does not lie on
f(ABC) and that N is not one of the common points of e and f(ABC), for all D ∈ D.
Thus circles f(ABC), f(ABD) = e1, and f(ACD) = e2 cannot have a common point,
and we arrive at a contradiction. �
Lemma 8. Every triangle with two angles strictly smaller than 7◦30′ is well-behaved.

Proof. Consider a sufficiently small disk D centered at the triangle’s circumcenter, and
then apply Lemmas 6 and 7. �
Lemma 9. Suppose that every triangle with two angles strictly smaller than θ is well-
behaved. Then every triangle with one angle strictly smaller than 2θ is well-behaved as
well.

Proof. Suppose that ∠A < 2θ in triangle ABC. Then there exists a disk D such that
∠BAD < θ and ∠CAD < θ for all D ∈ D, and, provided that D lies sufficiently far
away from ABC, we also have ∠ADB < θ and ∠ADC < θ for all D ∈ D. Now we apply
Lemma 7. �
By Lemma 8 and repeated application of Lemma 9, all triangles are well-behaved. This
completes the solution.

21. (D.Ratarov, 10–11) A trapezoid ABCD is bicentral. The vertex A, the incenter I, the
circumcircle ω and its center O are given and the trapezoid is erased. Restore it using
only a ruler.

Solution. Let AO meet ω for the second time at point M . Let ray AI meet ω at
M ′. Finally let M ′O meet ω at point M ′′. The angles AM ′M and M ′AM ′′ are right,
because AM and M ′M ′′ are diameters, thus lines AM ′′ and MM ′ are parallel as two
perpendiculars to AM ’. Using only a ruler we can pass the line through I parallel to
them. This line meet ω at B because ∠AIB = π/2 (AI and BI bisect angles BAD
and ABC respectively). Construct line j through O and I. Using only a ruler we can
construct two lines perpendicular to the diameter j. Finally construct the lines passing
through A and B and parallel to these perpendiculars. They meet ω at points D and C
respectively.

22. (Ju.Nesterov, V.Protasov, 10–11) A convex polyhedron and a point K outside it are given.
For each point M of a polyhedron construct a ball with diameter MK. Prove that there
exists a unique point on a polyhedron which belongs to all such balls.

Solution. Let P be the point of the polyhedron nearest to K. Since the polyhedron
is convex, P is defined uniquely and the polyhedron lies on the one side from the plane
passing through P and perpendicular to PK. Hence the ball with diameter PK and the
polyhedron have no common points distinct from P . On the other hand, P lies inside
any ball with diameter KM .

23. (A.Skopenkov, 10–11) Six points in general position are given in the space. For each
two of them color red the common points (if they exist) of the segment between these
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points and the surface of the tetrahedron formed by four remaining points. Prove that
the number of red points is even.

Solution. Each red point is the intersection of a segment determined by two given points
with the interior of a triangle determined by three other given points. Thus we can assign
a segment and a triangle to each red point.

Consider any way to split our six points into two triples T1 and T2. There are C3
6/2 = 10

such splits. We claim that for each such split there is an even number of red points P
such that the triangle assigned to P is either T1 or T2. Since each red point corresponds
to exactly one such split, this would solve the problem.

Consider an arbitrary split T1 = {A,B,C}, T2 = {P,Q,R}. Let line ℓ be the intersection
of planes ABC and PQR. (If these two planes are parallel, then no red points can be
associated with that split.) Let segment t1 be the intersection of line ℓ with the interior
of triangle T1, and define segment t2 analogously. (If one or both of segments t1 and t2
is the empty set, then no red points can be associated with that split.) The red points
associated with the split {A,B,C} and {P,Q,R} are exactly the endpoints of t1 and t2
that lie in the interior of the other segment.

Let us consider all possibilities for ordering of the endpoints of t1 and t2 along ℓ. There
are only three essentially different cases: t1 and t2 are disjoint (0 red points); t1 and
t2 overlap, but none is contained inside the other (2 red points); or one of t1 and t2 is
contained inside the other (2 red points). Each case yields an even number of red points,
as needed.

24. (A.Zaslavsly, 11) A truncated trigonal pyramid is circumsribed around a sphere touching
its bases at points T1, T2. Let h be the altitude of the pyramid, R1, R2 be the circumradii
of its bases, and O1, O2 be the circumcenters of the bases. Prove that

R1R2h
2 = (R2

1 −O1T
2
1 )(R

2
2 −O2T

2
2 ).

First solution. Let the lateral edges of the pyramid meet at S. Consider a cone with
vertex S circumscribed around the insphere. It meets the bases of the pyramid by in-
scribed ellipses, the foci of the first ellipse are T1 and the common point T ′

2 of the base
with the line ST2, and the foci of the second ellipse are T2 and the common point T ′

1 of
the base with ST1. By the generalized Euler formula (see [2])

R2
1l

2
1 = (R2

1 −O1T
2
1 )(R

2
1 −O1T

′2
2), (1)

R2
2l

2
2 = (R2

2 −O2T
2
2 )(R

2
2 −O2T

′2
1), (2)

where l1, l2 are the minor axes of the ellipses.

Consider now the symmetry plane of the cone. It passes through S, the center of the
insphere and the major axes of the ellipses. The section of the pyramid by this plane is
a trapezoid ABCD circumscribed around a circle with center I and diameter h, and this
circle touches the bases of the trapezoid at T1 and T2. It is easy to see that triangle AIT1

is similar to IBT2, and triangle CIT2 is similar to IDT1 (fig. 24), therefore

h2

4
= AT1 ·BT2 = CT2 ·DT1. (3)
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Let M be the midpoint of AD. Then AT1 · DT1 = AM2 − MT 2
1 = l21/4. Similarly

BT2 · CT2 = l22/4. From this and (3) we obtain that h2 = l1l2. Also since the bases of
the pyramid are homothetic with center S, we have (R2

1 − O1T
2
1 )(R

2
2 − O2T

2
2 ) = (R2

1 −
O1T

′2
2)(R

2
2 −O2T

′2
1). Hence multiplying (1) and (2) we obtain the required equality.

Second solution. Let our pyramid be A1B1C1A2B2C2, and let lines A1A2, B1B2, and
C1C2 meet at O. Suppose without loss of generality that A1B1C1 is the larger base, so
that the insphere ω of A1B1C1A2B2C2 is also the insphere of tetrahedron OA1B1C1 and
the exsphere opposite to O of tetrahedron OA2B2C2.

Let k1 and k2 be the circumcircles of triangles A1B1C1 and A2B2C2. Observe that R2
1 −

O1T
2
1 is the power of T1 with respect to k1, and similarly for R2

2 − O2T
2
2 . Furthermore,

if r is the radius of ω then, since planes A1B1C1 and A2B2C2 are parallel, we get that h
equals 2r. Thus our desired identity becomes 4r2R1R2 = power(T1, k1) · power(T2, k2).
We rewrite this as 4r2/R1R2 = (power(T1, k1)/R

2
1) · (power(T2, k2)/R

2
2).

Let ωO with radius rO be the exsphere of tetrahedron OA1B1C1 opposite O, and let
ωO touch plane A1B1C1 at point U . Then homothety with center O maps the union of
tetrahedron OA2B2C2 and sphere ω onto the union of tetrahedron OA1B1C1 and sphere
ωO. Consequently, r/R2 =O /R1 and power(T2, k2)/R

2
2 = power(U, k1)/R

2
1.

For convenience, from this point on let us write A, B, C, T , R, and k instead of A1, B1,
C1, T1, R1, and k1. Then our desired identity becomes 4rrO/R

2 = (power(T, k)/R2) ·
(power(U, k)/R2). Equivalently, 4rrOR2 = power(T, k) · power(U, k).
(Here OABC is an arbitrary tetrahedron, k with radius R is the circumcircle of triangle
ABC, r and rO are the tetrahedron’s inradius and exradius opposite O, and T and U are
the tangency points of its insphere and exsphere opposite O with plane ABC.)

Let I and IO be the centers of ω and ωO. Let TA and UA be the projections of points
T and U onto line BC. Since planes IBC and IOBC are the interior and exterior
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angle bisectors of the dihedral angle of tetrahedron OABC at edge BC, we get that
∠ITAT + ∠IOUAU = π/2. Consequently, triangles ITAT and UAIOU are similar. Thus
rrO = TTA · UUA.

Define points TB, UB, TC , and UC analogously. Then by just the same reasoning we get
also that rrO = TTA · UUA = TTB · UUB = TTC · UUC . Therefore points T and U are
isogonal conjugates in triangle ABC. (The last statement is in fact a well-known theorem.
However, we prove it anyway because the proof follows quite easily from the other steps
of the solution.)

With this, we can reduce the original stereometric problem to a purely planimetric one
as follows. Let points T and U be isogonal conjugates in triangle ABC (so that both of
T and U lie inside the triangle), and let TA and UA be their projections onto side BC.
Let k and R be the circumcircle and circumradius of triangle ABC. Then our desired
identity becomes 4TTA · UUA ·R2 = power(T, k) · power(U, k).
To see this, let lines BT and BU meet k for the second time at points V and W . Then
power(T, k) = BT · TV and power(U, k) = BU · UW . Let V X be a diameter in k. Then
triangles BTTA and XV C are similar. Consequently, BT ·CV = TTA · 2R. Analogously,
BU · CW = UUA · 2R. Thus 4TTA · UUA · R2 = BT · BU · CV · CW . With this, we are
only left to prove that CV · CW = TV · UW .

To this end, consider triangles CTV and CUW . We have ∠CV T = ∠BV C = ∠A.
Analogously, ∠CWU = ∠BWC = ∠A. On the other hand, ∠TCV +∠UCW = (∠ACT+
∠ACV )+(∠ACU+∠ACW ) = (∠ACT+∠ACU)+(∠ACV +∠ACW ) = ∠C+(∠ABV +
∠ABW ) = ∠B + ∠C, where we firstly used the fact that rays CT and CU are isogonal
in angle C, and then we used the fact that rays BV and BW are isogonal in angle B.
From this, it follows that ∠TCV = ∠CUW and ∠UCW = ∠CTV . Therefore triangles
CTV and UCW are similar, and so CV · CW = TV · UW as needed.
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