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1. (A.Zaslavsky) A circle ω centered at O and a point P inside it are given. Let
X be an arbitrary point of ω, the line XP and the circle XOP meet ω for
a second time at points X1, X2 respectively. Prove that all lines X1X2 are
parallel.

Solution. Since XPOX2 is cyclic and XOX1 is isosceles we have ∠PX2O =
∠PXO = ∠PX1O (fig. 8.1). And since OX1 = OX2 we obtain that ∠PX1X2 =
∠PX2X1 and PX1 = PX2. Thus PO is the perpendicular bisector to all
segments X1X2, i.e. all these segments are parallel.
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Fig. 8.1.

2. (L.Emelyanov) Let CM be the median of an acute-angled triangle ABC,
and P be the projection of the orthocenter H to the bisector of angle C.
Prove that MP bisects the segment CH.

Solution. Let E be the midpoint of CH. Then CE = EH = EP and
∠PEH = 2∠PCH = |∠A − ∠B|. But E and M lie on the nine-points
circle, hence ∠MEH = ∠MND = |∠A−∠B|, where N is the midpoint of
BC, and D is the foot of altitude from C (fig. 8.2).
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Fig. 8.2.

3. (R.Prozorov) Let AD be the altitude of an acute-angled triangle ABC, and
A′ be the point of its circumcircle opposite to A. A point P lies on the
segment AD, and points X, Y lie on the segments AB, AC respectively in
such a way that ∠CBP = ∠ADY , ∠BCP = ∠ADX. Let PA′ meet BC
at point T . Prove that D, X, Y , T are concyclic.

Solution. Let the circle DXY meet BC at point T ′. Let L be the second
common point of AP with the circle BPC, then ∠PCB = ∠PLB = ∠ADX
and XD ∥ BL, similarly DY ∥ CL, therefore the triangles DXY and LBC
are homothetic with center A, then their circumcircles are also homothetic.
Let the line passing through L and parallel to BC meet the circle BPC for
the second time at point N , then T ′ and N are corresponding points, and A,
T ′, N are collinear. The projection G of A′ to BC is the reflection of D about
the midpoint of BC, also the projection of N is the reflection of D about the
midpoint of BC, i.e. NA′ ⊥ BC. Let K be the second common point of NA′

with the circle ABC, then AD ·A′G = A′G ·GK = GC ·GB = DB ·DC =
DP ·DL = DP ·GN , which yields A′G : GN = DP : DA, hence P and A′

are corresponding points in similar triangles DT ′A and GT ′N , and P , T ′,
A′ are collinear (fig. 8.3). This ends the proof.
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Fig. 8.3.

4. (M.Evdokimov) A square with sidelength 1 is cut from the paper. Construct
a segment with length 1/2024 using at most 20 folds. No instruments are
available, it is allowed only to fold the paper and to mark the common points
of folding lines.

First solution. Let ABCD be the given square.

1–2. Fold the square two times along the lines parallel to AD, and obtain the
points U , V lying on AB, CD respectively and such that AU = DV = 1/4.

3–7. Fold the square five times along the lines parallel to AB, and divide the
side AD and the segment UV into 32 equal parts.

8. Fold the square along the line ST , where S is the point on AD such that
SD = 23/32, and T is the point on UV such that TV = 1/32. We obtain
the point P on CD such that PV : PD = 1 : 23, i.e. PV = 1/88 (fig. 8.4).
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9. Similarly fold the square along S ′T , where DS ′ = 24/32, and obtain the
point Q on CD such that V Q = 1/92. Therefore PQ = 1/2024.

Solution. Let ABCD be the given square. Denote by Xn the point on AD,
such that DXn = AD/n, and denote by Yn the point on BD, such that
DYn = BD/n.

Lemma. For any n the line XnYn+1 passes through C.

We obtain the proof applying the Menelaos theorem to the triangle AOD,
where O is the center of the square, and the points Xn, Yn+1, C.

Using the lemma we obtain the following construction.

1. Fold the square along the diagonal BD.

2. Folding the square along the medial line mark the point X2.

3. Folding the square along CX2 mark Y3.

4–5. Divide the segment DY3 into four equal parts and mark the point Y12.

6. Fold the square along CY12 and mark the point X11.

7. Bisect the segment DX11 and mark the point X22.

8. Fold the square along CX22 and mark the point Y23.

9. Folding the square along the line passing through Y23 and parallel to CD
mark the point X23.

10–11. Dividing the segments X22X23 into four equal parts we obtain the
segment with length (1/22− 1/23)/4 = 1/2024.

Remark. Another constructions are also possible.
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5. (M.Evdokimov, T.Kazitsyna) The vertices M , N , K of rectangle KLMN

lie on the sides AB, BC, CA respectively of a regular triangle ABC in such
a way that AM = 2, KC = 1, the vertex L lies outside the triangle. Find
the value of angle KMN .

Answer. 30◦.

Solution. Take a point N ′ on BC such that CN ′ = 2. It is clear that
MN ′ ∥ AC. Also, since CN ′ = 2CK and ∠N ′CK = 60◦, we obtain that
the triangle CKN ′ is right-angled, therefore ∠MN ′K = ∠MNK = 90◦.
And since L does not lie on AC we obtain that N ̸= N ′.

Since N and N ′ lie on the circle with diameter MK, we have ∠MKN =
∠MN ′N = 60◦ (fig. 8.5). Hence ∠KMN = 30◦.
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6. (F.Nilov) A circle ω touches lines a and b at points A and B respectively.
An arbitrary tangent to the circle meets a and b at X and Y respectively.
Points X ′ and Y ′ are the reflections of X and Y about A and B respectively.
Find the locus of projections of the center of the circle to the lines X ′Y ′.



Answer. The reflection of circle ω about AB without two points.

Solution. Consider a case when ω is the incircle of the triangle formed by
lines a, b, and XY . The reasoning for other cases is similar.

Let I be the center of ω, P be the projection of I to X ′Y ′, and T be the
touching point of ω with XY . Since A and P lie on the circle with diameter
IX ′, we have ∠API = ∠AX ′I = ∠IXA = ∠ITA (fig. 8.6). Similarly
∠IPB = ∠BTI and therefore ∠APB = ∠BTA.
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Similarly constructing for any point P of the obtained circle the points X, Y
we obtain that XY touches ω. We can not do this only for two points such
that the line IP is perpendicular to one of sidelines of the angle, because in
these cases one of points X ′, Y ′ does not exist.

7. (L.Shatunov) A convex quadrilateral ABCD is given. A line l ∥ AC meets
the lines AD,BC,AB,CD at points X,Y, Z, T respectively. The circumcircles
of triangles XY B and ZTB meet for the second time at point R. Prove that
R lies on BD.

Solution. Let BD meet XT at point U (fig. 8.7). Applying the Menelaos
theorem to the triangle BUZ and the points X, A, D we obtain

XZ

XU
· UD

DB
· AB
AZ

= 1.

Similarly
TY

TU
· UD

DB
· BC

CY
= 1.



Since AB : AZ = BC : CY , this yields that UX : UZ = UT : UY , i.e. the
degrees of U with respect to both circles are equal. Hence U and D lie on
BR.
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Рис. 8.7.

8. (S.Shmarin) Two polygons are cut from the cartboard. Is it possible that for
any disposition of these polygons on the plane they have common inner point
or have only finite number of common points?

Answer. Yes.

Solution. Let one polygon be an octagon A1 . . . A8 such that A2A4A6A8 is
a square, all sidelengths are equal, and ∠A2A1A3 > 40◦ (fig.8.8), and the
second polygon be a regular nonagon with sidelength greater than A1A3. If
these polygons have a common boundary segment, it has to contain one of
vertices A1, A3, A5, A7 of the octagon. Let this segment be A1B, where B
lies on A1A2. Since the external angle of the nonagon equals 40◦, its side
intersects the segment A2A3. Therefore the polygons have common inner
points.
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Fig. 8.8.

Remark. It is possible to prove that sum of numbers of the sides of the
polygons is minimal in the above example.
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1. (L.Emelyanov) Let H be the orthocenter of an acute-angled triangle ABC;
A1, B1, C1 be the touching points of the incircle with BC, CA, AB respectively;
EA, EB, EC be the midpoints of AH, BH, CH respectively. The circle
centered at EA and passing through A meets for the second time the bisector
of angle A at A2; points B2, C2 are defined similarly. Prove that the triangles
A1B1C1 and A2B2C2 are similar.

Solution. The points A2, B2, C2 are the projections of the orthocenter to the
bisectors, thus they lie on the circle with diameter HI, where I is the incenter.
Hence, for example, ∠A2C2B2 = ∠A2IB2 = (∠A+∠B)/2 = ∠A1C1B1 (fig.
9.1.). Similarly we obtain that the remaining corresponding angles of triangles
A1B1C1 and A2B2C2 are equal.
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Fig. 9.1.

Remark. The assertion of the problem is also correct if we replace the
orthocenter with an arbitrary point of the plane.

2. (A.Shekera) Points A, B, C, D on the plane do not form a rectangle. Let
the sidelengths of triangle T equal AB +CD, AC +BD, AD+BC. Prove
that the triangle T is acute-angled.



Solution. Note that

(AB + CD)2 + (AD +BC)2 − (AC +BD)2 =
= (AB2 +BC2 + CD2 +DA2 − AC2 −BD2) +

+2(AB · CD + AD ·BC − AC ·BD).

The second parenthesis is not negative by the Ptolemy inequality. Denote
a⃗ = O⃗A, b⃗ = O⃗B, c⃗ = O⃗C, d⃗ = O⃗D, where O is an arbitrary point. Then
the first parenthesis equals

(⃗a− b⃗)2+(⃗b− c⃗)2+(c⃗−d⃗)2+(d⃗−a⃗)2− (⃗a− c⃗)2− (⃗b−d⃗)2 = (⃗a− b⃗+ c⃗−d⃗)2 ≥ 0.

The first parenthesis equals zero if and only if ABCD is a parallelogram, and
the second one if and only if it is a cyclic quadrilateral. Since ABCD is not
a rectangle, both conditions cannot be realized. Thus (AC+BD)2 < (AB+
CD)2 + (AD + BC)2. This and two similar inequalities yield the assertion
of the problem. This reasoning work also for four collinear points: the first
parenthesis equals zero, when one of points A, C lies inside the segment
BD, and the remaining one lies outside it; the second parenthesis equals
zero when the midpoints of AC and BD coincide. These both conditions
cannot be correct simultaneously.

3. (L.Shatunov, V.Shelomovsky) Let (P, P ′) and (Q,Q′) be two pairs of points
isogonally conjugated with respect to a triangle ABC, and R be the common
point of lines PQ and P ′Q′. Prove that the pedal circles of points P , Q, and
R are coaxial.

First solution. Denote by Xa, Xb, Xc the projections of an arbitrary point
X to BC, CA, AB respectively. Let p, q, r be the pedal circles of points
P , Q, R respectively, and M , N , K be their centers. Then M , N , K lie on
the Gauss line of PQP ′Q′. Applying the Menelaos theorem to the triangles
PQR′ and P ′Q′R′ we obtain (R′ is isogonally conjugated to R).

P ′Q

P ′R′
Q′R′

Q′P

PR

RQ
=

P ′Q

QR′
R′P

PQ′
Q′R

RP ′ = 1.

Therefore
RP ·RP ′

RQ ·RQ′ =
R′P ·R′P ′

R′Q ·R′Q′ .

By the Thales theorem

RaPa ·RaP
′
a

RaQa ·RaQ′
a

=
R′

aPa ·R′
aP

′
a

R′
aQa ·R′

aQ
′
a

,



i.e. the ratios of degrees of Ra, R′
a with respect to p and q are equal. Therefore

these points lie on some circle coaxial with p and q. Since the center of this
circle lies on MN , it coincides with r.

Second solution. Applying two times the Thales theorem we obtain RaPa·RaP
′
a

RaQa·RaQ′
a
=

RP ·RP ′

RQ·RQ′ . Similarly RP ·RP ′

RQ·RQ′ =
RbPb·RbP

′
b

RbQb·RbQ′
b
= RcPc·RcP

′
c

RcQc·RcQ′
c
= RaPa·RaP

′
a

RaQa·RaQ′
a
. By the property

of coaxial circles Ra, Rb, Rc lie on a circle coaxial with the pedal circles of
P and Q.

4. (P.Puchkov) For which n > 0 it is possible to mark several different points
and several different circles on the plane in such a way that:
- exactly n marked circles pass through each marked point;
- exactly n marked points lie on each marked circle;
- the center of each marked circle is marked?

Answer. For all n.

Solution. Construct the required configuration by induction. If n = 1 it
contains two circles with radii 1, such that each of them passes through the
center of the other, and the centers of these circles. Let the configuration
for n contain 2n unit circles and their centers. Translate it to a unit vector
distinct from all vectors between the marked points. Then we obtain one
new point on each of old circles — the image of its center, and one new circle
passing through each of old points — the image of the circle centered at this
point. Similarly n new circles and one old circle pass through each of new
points, and n new points and one old point lie on each of the circles.

Remark. Joining each point of the configuration with the centers of all
circles passing through it, we obtain the projection of the n-dimensional
cube such that the lengths of all edges are equal.
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5. (A.Zaslavsky) Let ABC be an isosceles triangle (AC = BC), O be its
circumcenter, H be the orthocenter, and P be a point inside the triangle
such that ∠APH = ∠BPO = π/2. Prove that ∠PAC = ∠PBA = ∠PCB.
Solution. Let M be the midpoint of AB. Then B,O, P,M lie on the circle
with diameter OB, and A,H, P,M lie on the circle with diameter AH. Hence
∠PAH = ∠PMH = ∠PMO = ∠PBO (fig. 9.5). We obtain that PAH ∼
PBO, i.e., P is the center of spiral similarity mapping A⃗H to B⃗O. The
calculation of angles (∠OBC = ∠OCB = 90◦ − ∠ABC = ∠HAB =
∠HBA) yields AHB ∼ BOC. Therefore the above spiral similarity maps
B to C. Thus PAB ∼ PBC, which yields ∠PCB = ∠PBA and ∠PBC =
∠PAB. Then ∠PAC = ∠BAC − ∠PAB = ∠CBA − ∠PBC = ∠PBA,
q.e.d.
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Fig. 9.5.

Remark. A point P such that ∠PAC = ∠PBA = ∠PCB, and a point
Q such that ∠QAB = ∠QBC = ∠QCA, are called the Brocard points
of triangle ABC. From the solution we see that for an isosceles triangle P
satisfies the conditions ∠PAC = ∠PCB, ∠PAB = ∠PBC. Such (and two
similar) points are called the Humpty points and coincide with the projections



of the orthocenter to the medians of triangle. Also we have ∠PBA = ∠PCB,
∠PBC = ∠PAB. Such (and similar) conditions define the Dumpty points
coinciding with the projections of the circumcenter to the symedians. Thus
we can reformulate the assertion of the problem: The Brocard points of an
isosceles triangle are also the Humpty and Dumpty points corresponding to
the base vertices.

6. (A.Mardanov, K.Mardanova) The incircle of a triangle ABC centered at I
touches the sides BC, CA, and AB at points A1, B1, and C1 respectively.
The excircle centered at J touches the side AC at point B2 and touches the
extensions of AB, BC at points C2, A2 respectively. Let the lines IB2 and
JB1 meet at point X, the lines IC2 and JC1 meet at point Y , the lines IA2

and JA1 meet at point Z. Prove that if one of points X, Y , Z lies on the
incircle then two remaining points also lie on it.

Solution. Since Y is the common point of diagonals of trapezoid IC1C2J ,
we have IY : IC2 = IC1 : (IC1 + JC2) = r : (r + rb), where r is the
inradius, and rb is an exradius. Therefore Y lies on the incircle if and only if
IC2 = r+ rb, and since C1C2 = AC = b, this is equivalent to b2 = r2b +2rrb.
The same condition we obtain for Z.

Now consider the point X. Let BH be the altitude and BL be the bisector
of ABC. Since the quadruple B, L, I, J is harmonic, their projections H,
L, B1, B2 also form a harmonic quadruple. Therefore the common point X
of lateral sidelines of trapezoid IB1JB2 lies on BH (fig. 9.6). Also BX :
B2J = BI : IJ = r : (rb− r), i.e. 1/BX = 1/r− 1/rb = p/S − (p− b)/S =
2/BH and X is the midpoint of BH. The condition IX = r is equal to
r : BX = IB2 : rb, and since B1B2 = |AB − AC| = |a − c| we can rewrite
this as r2b − 2rrb = (a− c)2.
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Finally note that b2 − (a− c)2 = 4(p − a)(p − c) = 4S2/(p(p− b)) = 4rrb.
Hence the conditions for all three points are the same.

7. (D.Brodsky) Let P and Q be arbitrary points on the side BC of triangle
ABC such that BP = CQ. The common points of segments AP and AQ

with the incircle form a quadrilateral XY ZT . Prove the locus of common
points of diagonals of such quadrilaterals.

Answer. The common point of the median from A and the segment joining
the touching points of AB and AC with the incircle.

Solution. Let AM be a median of the triangle, B′, C ′ be the touching
points of the incircle with AC, AB respectively. The common point M ′ of the
diagonals of cyclic quadrilateral XY ZT lies on the polar of the common point
of its sidelines XY and ZT , i.e. on B′C ′. Let AP , AQ meet B′C ′ at points
P ′, Q′ respectively. By the generalized butterfly theorem (B′C ′M ′P ′) =



(C ′B′M ′Q′). Since (CBMP ) = (BCMQ), this yields that A, M , M ′ are
collinear (fig. 9.7).
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Fig. 9.7.

8. (G.Zabaznov) Let points P and Q be isogonally conjugated with respect to
a triangle ABC. The line PQ meets the circumcircle of ABC at point X.
The reflection of BC about PQ meets AX at point E. Prove that A, P , Q,
E are concyclic.

Solution.

Lemma. Let a circle S, a point A on it, a point P and a line t passing
through P be fixed. An arbitrary line q passing through P meets S at points
X, Y . The lines AX, AY meet t at points E, F . Then the Miquel point of
FEXY is fixed.

Proof. Let W be the point on S such that AW ∥ t; PW meet S for the
second time at M ; U , V be the common points of t and S (fig. 9.8.1). Then
∠PMY =⌣ WY/2 = (⌣ UY+ ⌣ AV )/2 = ∠UFY , i.e. M lies on the
circle PFY . Similarly M lies on the circle PEX.
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Return to the problem. Let PQ meet BC at point R, and meet the circle
ABC for the second time at point Y . Let K, L, F be the common points
of RE with AB, AC, AY respectively. By the lemma the Miquel points of
quadrilaterals BCLK and XY FE coincide, denote this point by M . Note
that the compositions of inversion and symmetry with center M corresponding
to both quadrilaterals swap R and A. Therefore these compositions coincide.

Since P and Q lie on the bisector of angle FRC, they are isogonally conjugated
with respect to the quadrilateral CBKL, hence the above composition of
inversion and symmetry swaps them. Finally note that this composition maps
the line PQ to the circle AMEF (fig. 9.8.2).
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1. (D.Shvetsov) The diagonals of a cyclic quadrilateral ABCD meet at point
P . The bisector of angle ABD meets AC at point E, and the bisector of
angle ACD meets BD at point F . Prove that the lines AF and DE meet
on the median of triangle APD.

Solution. Since the triangles APB and DPC are similar, we have AE :
EP = AB : BP = CD : CP = DF : FP and the required assertion follows
from the Ceva theorem (fig.10.1).
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Fig. 10.1.

2. (T.Kazitsyna) For which greatest n there exists a convex polyhedron with n

faces having the following property: for each face there exists a point outside
the polyhedron such that the remaining n−1 faces are seen from this point?

Answer. For n = 4.

First solution. It is clear that a tetrahedron satisfies the condition. Suppose
that n > 4. Then there exist three faces which have no common vertex. The
polyhedron lies inside one of trihedral angles formed by the planes of these
faces. An arbitrary ray from the vertex of this angle intersects the polyhedron
by a segment. Deleting the faces containing the endpoints of these segments
closest to the vertex we obtain a polyhedron containing the original one with



smaller number of faces. All faces of this new polyhedron have to be seen
from some point of space — contradiction.

Second solution. Let a point O be the origin of n vectors perpendicular
to the faces of the polyhedron and lying outside it. The assumption of the
problem means that for any of these vectors there exists a plane passing
through O and such that this vector lies on one side, and the remaining
n − 1 vectors lie on the other side with respect to this plane. But we can
choose four of n vectors such that O lies inside the tetrahedron formed by
the endpoints of these four vectors. Any vector distinct from them lies inside
a trihedral angle defined by some three vectors, therefore such plane can not
exist for this vector.

Third solution. Each face is seen from some semispace. If n > 4 then each
four of these semispaces have a common point. By the Helly theorem all
semispaces have a common point which is impossible.

3. (N.Shteinberg, L.Finarevsky) Let BE and CF be the bisectors of a triangle
ABC. Prove that 2EF ≤ BF + CE.

Solution. If AB = AC then BF = FE = EC and the assertion is correct.
Let AB < AC. Then BF : FA < CE : EA, hence EF meets the extension
of BC beyond B and ∠BEF < ∠CBE. On the other hand, C lies outside
the circle BFE, thus ∠BEF > ∠BCF . Since ∠BEF+∠CFE = ∠BCF+
∠CBE, we obtain that |∠BEF − ∠CFE| < ∠CBE − ∠BCF (fig. 10.3).
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Fig. 10.3.

Applying the sine law to the triangles BFE and CEF we have

BF + CE

EF
=

sin∠BEF

sin∠FBE
+

sin∠CFE

sin∠ECF
.



Since the product of fractions in the right part

sin∠BEF sin∠CFE

sin∠FBE sin∠ECF
=

cos(∠BEF − ∠CFE)− cos(∠BEF + ∠CFE)

cos(∠FBE − ∠ECF )− cos(∠FBE + ∠ECF )
> 1,

their sum is greater than 2.

4. (S.Kuznetsov, M.Vekshin) Let I be the incenter of a triangle ABC. The lines
passing through A and parallel to BI, CI meet the perpendicular bisector
to AI at points S, T respectively. Let Y be the common point of BT and
CS, and A∗ be a point such that BICA∗ is a parallelogram. Prove that the
midpoint of segment Y A∗ lies on the excircle of the triangle touching the
side BC.

First solution. It is clear that ∠IST = ∠AST = ∠ICB, ∠ITS =
∠ATS = ∠IBC. Hence the triangles BIC and TIS are similar, i.e. I is
the Miquel point of BCST , and Y lies on the circles ICB, ITS. Let J be
the excenter. Then A∗ is the orthocenter of triangle JBC, thus the midpoint
of A∗Y lies on the nine-points circle of this triangle.

Let B′, C ′ be the second common points of AS, AT with the circle ITS. Then
∠B′C ′T = ∠TC ′I = ∠B′ST = ∠TSI, therefore, C ′A bisects the angle
B′C ′I equal to ACB. Similarly B′A bisects angle C ′B′I equal to ABC. Also
the corresponding sidelines of triangles ABC and IB′C ′ are parallel, because
their bisectors are parallel, thus these triangles are symmetric with respect
to the midpoint of AI. Then AB′CA∗ and AC ′BA∗ are parallelograms, and
the homothety with center A∗ and coefficient 1/2 maps the circle ITS to the
nine-points circle of triangle ABC.

Thus the midpoint of A∗Y is the common point of nine-points circles of
triangles ABC and JBC. This point lies also on the pedal circle of J with
respect to triangle ABC — an excircle (fig.10.4).
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Remark. From the solution we see that the midpoint of A∗Y is the Feuerbach
point Fa.

Second solution. Let ST meet BC at point P . The composition of inversion
and symmetry with center A swapping B and C maps I to J , and maps P to
a point P ′ on the circumcircle such that isosceles triangles API and AIaP

′

are similar. Let the excircle touch BC at point D. Since the triangle formed
by the external bisectors is similar to BCJ , and A, D are the corresponding
points of these triangles, there exists a point P ′′ on the nine-points circle of
triangle BCJ such that isosceles triangles AIaP ′ and DIaP

′′ are similar. Let
M be the midpoint of BC and α = ∠API = ∠DJP ′′. It is easy to see that
the arc MP ′′ of the nine-points circle of triangle BCJ and the arc IY of the
circle BCJ equal α, hence the homothety with center A∗ and coefficient 2



maps M to I, and maps P ′′ to Y .

Third solution. Rename A∗ to Z. Denote the reflection of a point about
AI by prime. Let M be the midpoint of BC; the incircle and the excircle
touch BC at P and Q respectively. Let us prove that the midpoint of Y ′Z ′ is
the second common point of M ′Q with the excircle. Note that S ′ and T ′ are
the midpoints of arcs AC and AB of the circumcircle. The triangles S ′IC ′

and T ′IB′ are similar — the angles at I are equal and IS ′/IC ′ = IS ′/IC =
IT ′/IB = IT ′/IB′. Thus Y ′ is the second common point of circles BIC and
S ′IT ′. Let K be the reflection of I about the perpendicular bisector to BC
(it also lies on the circle BB′CC ′IY ′), and F be the radical center of circles
ABC, BIC, S ′IT ′. Then, since MI ∥ AQ, we have MM ′ : MQ = 2IP :
IA = BC : S ′T ′ = sinBFI : sinS ′FI = sinY ′IK : sinY ′KI = Y ′K : Y ′I.
Since ∠QMM ′ = ∠KY ′I, we obtain that the triangles QMM ′ and IY ′K are
similar. In particular, the lines IY ′ and M ′Q are parallel, and the homothety
with center Z and the coefficient 1/2 maps the first line to the second one.
Let this homothety map Q to X. Then ∠KXI = ∠MM ′Q = ∠Y ′KI, hence
IY ′ · IX = IK2 = 4M ′Q′2. Thus M ′Q′2 = IX · IY ′/4 = M ′Q · (IY ′/2).
Therefore M ′Q meets the excircle for the second time at the point lying on
the distance IY ′/2 from M ′, i.e. at the midpoint of ZY ′.
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5. (M.Vasilyev) The incircle of a right-angled triangle ABC touches the hypothenuse
AB at point T . The squares ATMP and BTNQ lie outside the triangle.
Prove that the areas of triangles ABC and TPQ are equal.

Solution. Let BC = a, AC = b, AB = c, AT = p− a, BT = p− b. Then
the inradius of ABC equals p− c, and its area

S = p(p− c) =
S2

(p− a)(p− b)
= (p− a)(p− b).

Since PTQ is a right-angled triangle with cathetus PT =
√
2(p− a), TQ =√

2(p− b), its area also equals (p− a)(p− b).

6. (A.Zaslavsky) A point P lies on one of medians of triangle ABC in such a
way that ∠PAB = ∠PBC = ∠PCA. Prove that there exists a point Q on
another median such that ∠QBA = ∠QCB = ∠QAC.

Solution. Let P lie on the median from B. Then AC touches the circle
PB and the circle APB, because the median is the radical axis of these
circles. On the other hand the circle APB touches BC (fig.10.6), therefore
AC = BC and the reflection of P about the symmetry axis of the triangle
is the required point Q.
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Fig. 10.6.

Remark. The assertion of the problem may be reformulated: if a Brocard
point lies on a median (a symedian), then the triangle is isosceles and this
point coincides with a Humpty and a Dumpty points.

7. (K.Belsky) Let ABC be a triangle with ∠A = 60◦; AD, BE, and CF be its
bisectors; P , Q be the projections of A to EF and BC respectively; and R
be the second common point of the circle DEF with AD. Prove that P , Q,
R are collinear.

Solution. It is known that the circle passing through the feet of bisectors
passes also through the Feuerbach point. Also, since ∠A = 60◦, the orthocenter
and the circumcenter of the triangle are symmetric with respect to the
bisector of angle A. Hence the center of the nine-points circle lies on AD, i.e.
the Feuerbach point coincides with R. Also, if I, r are the incenter and the
inradius then AI = 2r = 2IR. Thus we have to prove that PQ bisects AI.
Let us prove this for an arbitrary triangle.

Let EF meet AD and BC at points S, T respectively. Since the quadruple A,
I, S, D is harmonic, the inversion about the circle with diameter AI swaps
points S and D. On the other hand, T is the foot of the external bisector
of angle A, therefore AQ and AP are the altitudes of right-angled triangles



DAT and SAT . Hence TS · TP = TD · TQ = TA2 and the inversion with
center T and radius TA swaps S and P , T and Q. Since this circle and the
circle with diameter AI are perpendicular, the inversion about the last circle
swaps P and Q, i.e. PQ passes through its center R (fig. 10.7).
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Fig. 10.7.

8. (G.Galyapin) The common tangents to the circumcircle and an excircle of
triangle ABC meet BC, CA, AB at points A1, B1, C1 and A2, B2, C2

respectively. The triangle ∆1 is formed by the lines AA1, BB1, and CC1,
the triangle ∆2 is formed by the lines AA2, BB2, and CC2. Prove that the
circumradii of these triangles are equal.
Solution.

Lemma. Let J be the center of the excircle, and P be the touching point of
the line A1B1C1 with the circumcircle. Then C, J , C1, P are concyclic.
Proof. Let W be the second common point of CJ with the circumcircle.
Then UW ∥ C1J , and ∠(PC,CJ) = ∠(PC1, C1J) (fig. 10.8).
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Fig. 10.8.

The assertion of the lemma may be reformulated: AA1, AA2 are isogonal
in angle BAC, and 2φ = 2∠(A2A,AA1) = ∠(JP, PQ), where P ,Q are
the touching points of the circumcircle and the excircle with their common
tangent. Similar equalities are correct for B and C.

Since ∠(A2A,AA1) = ∠(B2B,BB1) = ∠(C2C,CC1), we have ∠(B2B,C2C) =
∠(BB1, CC1). Therefore B, C, J , A3 = BB1 ∩ CC1, and A4 = BB2 ∩ CC2

are concyclic, J is the midpoint of arc A3A4, and ∠(A4J, JA3) = 2φ. Similar
equalities we obtain for the remaining vertices of ∆1 and ∆2, therefore the
rotation with center J by angle 2φ maps one of these triangles to the second
one, which yields the required assertion.


