
XX GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The correspondence round. Solutons

1. (8, D.Shvetsov) Bisectors AI and CI meet the circumcircle of triangle ABC at points
A1, C1 respectively. The circumcircle of triangle AIC1 meets AB at point C0; point A0 is
defined similarly. Prove that A0, A1, C0, C1 are collinear.

Solution. Let A1C1 meet AB at point A′. Then

∠C1A
′A = (⌣ AC1+ ⌣ BA1)/2 = (⌣ AC1+ ⌣ A1C)/2 = ∠C1IA.

Therefore A, I, A′, C1 are concyclic and A′ coincides with A0 (fig. 1). Similarly we obtain
that A1C1 passes through C0.
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Fig. 1.

2. (8, B.Frenkin) Three different collinear points are given. What is the number of isosceles
triangles such that these points are their circumcenter, incenter and excenter (in some
order)?

Answer. Two, if the medial point divide the segment between two remaining ones into
two parts such that their ratio is not greater than 3, and three otherwise.

Solution. Let ABC be an isosceles triangle with vertex C; O, I, Ic be its circumcenter,
incenter and excenter (center of excircle touching AB). Then A, B, I, Ic lie on the circle
with diameter IIc centered at the midpoint W of arc AB. Hence if O, I, Ic are given,
then we construct the triangle ABC finding the midpoint W of segment IIc, drawing the
circles centered at O, W with radii OW , WI respectively, finding the common points A
and B of these circles, and the reflection C of W about O. But I has to lie inside the
circumcircle. This is always correct if O is one of two extreme points (then I is the medial
point). And if O is the medial point, then the inequality OW > OI has to be correct, i.e.
OIc : OI > 3.
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3. (8, K.Belskij) Let ABC be an acute-angled triangle, and M be the midpoint of the minor
arc BC of its circumcircle. A circle ω touches the side AB, AC at points P , Q respectively
and passes through M . Prove that BP + CQ = PQ.

Solution. By the assumption ∠PAQ = (⌣ PMQ− ⌣ PQ)/2 = π− ⌣ PQ = π −
2∠PMQ, i.e. ∠PMQ = ∠APQ. Thus PM and QM bisect the angles BPQ, CQP
respectively, and M is the incenter of triangle APQ. Then constructing perpendiculars
MX, MY to AB, AC respectively we obtain that PX = QY = PQ/2. Also since MB =
MC, we have BX = CY (fig. 3). Therefore BP +QC = PX +XB +QY − Y C = PQ.
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Fig. 3.

4. (8, L.Emelyanov) The incircle ω of triangle ABC touches BC, CA, AB at points A1, B1

and C1 respectively, P is an arbitrary point on ω. The line AP meets the circumcircle of
triangle AB1C1 for the second time at point A2. Points B2 and C2 are defined similarly.
Prove that the circumcircle of triangle A2B2C2 touches ω.

Solution. Points A, B1, C1 lie on the circle with diameter AI, where I is the incenter
of ABC. Hence ∠IA2A = ∠IA2P = 90◦, and A2 lies on the circle with diameter IP ,
touching ω at P (fig. 4). Points B2, C2 also lie on this circle.
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5. (8, P.Pogosjan) Points A′, B′, C ′ are the reflections of vertices A, B, C about the opposite
sidelines of triangle ABC. Prove that the circles AB′C ′, A′BC ′, and A′B′C have a common
point.

Solution. Let X be the second common point of circles AB′C ′ and A′BC ′. Then ∠(XB′, XC ′) =
∠(AB′, AC ′) = 3∠(AC,AB). Similarly ∠(XC ′, XA′) = 3∠(BA,BC). Therefore ∠(XB′, XA′) =
3∠(AC,BC) = ∠(CB′, CA′).

6. (8–9, А.Shekera) A circle ω and two points A, B of this circle are given. Let C be an
arbitrary point on one of arcs AB of ω; CL be the bisector of triangle ABC; the circle
BCL meet AC at point E; and CL meet BE at point F . Find the locus of circumcenters
of triangles AFC.

Answer. A segment with the endpoint at the midpoint of arc ACB, forming the angle
with AB equal to π/2− ∠ACB

Solution. Let O be the center of circle ACF . Then ∠AOF = 2∠ACF = ∠ACB do not
depend on C. Hence all triangles AOF are similar, and O is the image of F about the
spiral similarity with center A. Also ∠ABF = ∠LBE = ∠LCE do not depend on C,
thus F moves along a line. Therefore all points O also lie on a line. The angle between
this line and BE equals OAF = (π−∠ACB)/2 = i/2−∠ABE, hence it is perpendicular
to the reflection of AB about BE (fig. 6). When C tends to B, O tends to the midpoint
of arc ACB, and when C tends to A, F tends to the tangent to the circumcircle ABC at
A. Therefore the required locus is the segment given in the answer.
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7. (8–9, B.Frenkin) Restore a bicentral quadrilateral if two opposite vertices and the incenter
are given.
Solution. Let the incenter I of bicentral quadrilateral ABCD lie inside triangle ABC.
Then ∠AIC = ∠ABC + ∠IAB + ∠ICB = ∠ABC + π/2. Thus if A, C, I are given, we
can find the value of angle B and construct the circumcircle centered at O. Also from
the Poncelet theorem we obtain that the line OI passes through the common point L of
diagonals of ABCD, the midpoints M , N of AC, BD respectively lie on the circle with
diameter OL, and the line MN passes through I. Hence we can construct the point N
and the diagonal BD.

8. (8–9, K.Belskij) Let ABCD be a quadrilateral with ∠B = ∠D and AD = CD. The
incircle of triangle ABC touches the sides BC and AB at points E and F respectively.
Prove that the midpoints of segments AC, BD, AE, and CF are concyclic.
Solution. Let K, L, M , N be the midpoints of BD, AC, AE, CF respectively. Since
LM ∥ BC, and LN ∥ AB, we have ∠MLN = ∠CBA. On the other hand

−−→
KM =

(
−−→
DA +

−−→
BE)/2,

−−→
KN = (

−−→
DC +

−−→
BF )/2, and since DA = DC, BE = BF , and the angle

between
−−→
DA and

−−→
DC equals the angle between

−−→
BE and

−−→
BF , we obtain that the angle

MKN also is equal to these angles.

9. (8–9, A.Mardanov) Let ABCD (AD ∥ BC) be a trapezoid circumscribed around a circle
ω, which touches the sides AB, BC, CD, and AD at points P , Q, R, S respectively. The
line passing through P and parallel to the bases of the trapezoid meets QR at point X.
Prove that AB, QS, and DX concur.
First solution. Let I be the center of ω. Then the sidelines of triangles PQX and
AID are parallel (fig. 9). Thus these triangles are homothetic which yields the required
concurrency.
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Second solution. Fix the points A, B, P , Q, S and move R along ω. Then D and X move
along AS and parallel line passing through P respectively. Clearly the correspondence
between D and X is projective, and since they meet at infinity, this correspondence is
linear, i.e. all lines DX are concurrent. Also it is clear that their common point lies on
AB, hence it is sufficient to find one position such that DX, AB, and QS concur. This
is correct if the trapezoid ABCD is isosceles.

10. (8–9, A.Tereshin) Let ω be the circumcircle of a triangle ABC. A point T on the line BC
is such that AT touches ω. The bisector of angle BAC meets BC and ω at points L and
A0 respectively. The line TA0 meets ω at point P . The point K lies on the segment BC
in such a way that BL = CK. Prove that ∠BAP = ∠CAK.

Solution. The projection of ω to itself from T swaps B with C, P with A0, and conserve A.
This yields the equality of cross-ratios (BCAA0) = (CBAP ), i.e. sin∠BAP : sin∠CAP =
PB : PC = AB2 : AC2. On the other hand applying the sines law to triangles AKC
and BKC we obtain that sin∠CAK : sin∠BAK = (CK/AC) : (BK/AB) = (AB/AC) ·
(BL/AL) = AB2 : AC2, which yields the required equality.

11. (8–10, B.Butyrin) Let M , N be the midpoints of sides AB, AC respectively of a triangle
ABC. The perpendicular bisector to the bisectrix AL meets the bisectrixes of angles B
and C at points P and Q respectively. Prove that the common point of lines PM and
QN lies on the tangent to the circumcircle of ABC at A.

Solution. Note that the lines PQ and MN meet at the midpoint K of segment AL. Also
P bisects the arc AL of circle ABL, therefore ∠BPL = ∠CAL = ∠BIC − π/2, where I
is the incenter of ABC, i.e. PL ⊥ CI. Similarly QL ⊥ BI. Thus the sidelines of triangle
PQL are parallel to the sidelines of triangle formed by the touching points of sides of
ABC with the incircle, and the tangents to the circumcircle of PQL at the vertices are
parallel to the sidelines of ABC. Since the circle APQ is the reflection of circle LPQ
about PQ, the tangent to this circle at P is parallel to AB, and the tangent at A coincide
with the tangent to the circumcircle of ABC. Also ∠PAQ = ∠PLQ = π−∠PIQ, hence
I lies on the circle APQ, and the tangent to this circle at I is parallel to BC. Denote the
common point of tangents at A and I as T (fig. 11)
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We have to prove that PM passes through T , i.e. that the line passing through A and
parallel to the tangent at P , and the line passing through the projection K of P to AI,
parallel to the tangent at I meet AT at the same point. Let S be the common point of
tangents at A and P , U be the common point of AI with the line passing through P and
parallel to IT . then IK : KU = AT : AS = ctg∠IPA : ctg∠AIP , and we obtain the
required assertion.

12. (8–10, D.Shvetsov) The bisectors AA1, CC1 of a triangle ABC with ∠B = 60◦ meet at
point I. The circumcircles of triangles ABC, A1IC1 meet at point P . Prove that the line
PI bisects the side AC.

Solution. Since ∠A1IC1 = 120◦ = 180◦ − ∠A1BC1, the circles ABC and A1IC1 meet
at points B and P (fig. 12). Hence the triangles PA1C and PC1A are similar, i.e. PB1 :
PC1 = A1C : AC1. On the other hand since ∠AC1I+∠IA1C = 180◦, we obtain applying
the sines law to the triangles AC1I and CA1I that A1C : AC1 = IC : IA. therefore
sin∠PIA1 : sin∠PIC1 = IC : IA, and IP is the median of triangle IAC.
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13. (8–11, A.Zaslavsky) Can an arbitrary polygon be cut into isosceles trapezoids?

Answer. Yes.

Solution. Since an arbitrary polygon can be cut into triangles, and an arbitrary triangle
can be cut into isosceles triangles (drawing the altitude to the longer side and joining its
foot with the midpoints of two remaining sides), It is sufficient to solve the problem for
isosceles triangles.

Note that we can cut an isosceles triangle into three isosceles trapezoids drawing three
rays parallel to its sides from the center (fig. 13.1).
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Fig. 13.1

Now if the angle at the vertex of the triangle is greater than 60◦ we can cut it into isosceles
trapezoids applying several times the construction on fig. 13.2.

Fig. 13.2

Finally if the angel at the vertex of the triangle is less than 60◦ cut it into three triangles
joining the vertices with the circumcenter. Two of obtained triangles are obtuse-angled,
and the angle at the vertex of third one is twice greater than the angle of the original
triangle. Repeating this trick several times we cut the given triangle into isosceles triangles
with the angles at the vertices greater than 60◦.

14. (9–11, A.Tereshin) The incircle ω of a right-angled triangle ABC touches the circumcircle
of its medial triangle at point F . Let OE be the tangent to ω from the midpoint O of the
hypothenuse AB, distinct from AB. Prove that CE = CF .
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Solution. The homothety with center C and coefficient 2 maps F to the touching point
of the circumcircle and the semiincircle of given triangle. Hence the line CF is the
reflection about the bisector of angle C of the line joining C wit the touching point
of the hypothenuse with the corresponding excircle. Let the hypothenuse touches the
incircle and the excircle at points T and S respectively. Since OE = OT = OS we obtain
that ∠SET = π/2, i.e. the line SE passes through the point of ω opposite to T . But SC
also passes through this point, therefore E lies on SC and is the reflection of F about
the bisector of angle C (fig. 14).
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Fig. 14

15. (9–11, M.Panov) The difference of two angles of a triangle is greater than 90◦. Prove that
the ratio of its circumradius and inradius is greater than 4.

First solution. Let A be the smallest angle of triangle ABC, B be the greatest angle,
O be the circumcenter, L be the midpoint of arc AB, CD and PQ be the chord and the
diameter of the circumcircle parallel to AB (fig. 15). Since ⌣ CD =⌣ ADC− ⌣ AD =⌣
ADC− ⌣ BC > π, we obtain that A, B, C lie on the same semiplane with respect to
PQ, i.e. ∠OLC > π/4, and the distance from O to the line LC passing through the
incenter I is greater than R/

√
2. Therefore OI2 = R2 − 4Rr > R2/2 which is equivalent

to the required inequality.
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Second solution. From the formula r = 4R sin(A/2) sin(B/2) sin(C/2) we have

r

R
= 2 sin

C

2

(
cos

B − A

2
− cos

A+B

2

)
< 2 sin

C

2

(
1√
2
− sin

C

2

)
≤ 2

(
1

2
√
2

)2

=
1

4
.

Remark. the obtained estimation is exact. If cosC = 3/4, A = π/4− C/2, B = 3π/4−
C/2 all inequalities transform to equalities and R = 4r.

16. (9–11, A.Mardanov) Let AA1, BB1, and CC1 be the bisectors of a triangle ABC. The
segments BB1 and A1C1 meet at point D. Let E be the projection of D to AC. Points P
and Q on the sides AB and BC respectively are such that EP = PD, EQ = QD. Prove
that ∠PDB1 = ∠EDQ.

Solution. The sum of distances from any point of segment A1C1 to AB and BC equals
to the distance from this point to AC (because this is correct for the endpoints of the
segment). Since the distances from D to AB and BC are equal each of these distances
equals to a half of DE, i.e. D is the incenter of triangle BPQ (fig. 16). Thus ∠EPQ =
∠DPB, and ∠EQP = ∠DQB. Therefore B and E are isogonally conjugated with respect
to triangle DPQ and we obtain the required equality.
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17. (9–11, L.Dong) Let ABC be a non-isosceles triangle, ω be its incircle. Let D,E and F be
the points at which the incircle of ABC touches the sides BC,CA and AB, respectively.
Let M be the point on ray EF such that EM = AB. Let N be the point on ray FE such
that FN = AC. Let the circumcircles of △BFM and △CEN intersect ω again at S and
T , respectively. Prove that BS,CT and AD concur.

Solution.

Lemma. Let X, Y , Z be points on ω such that DX, EY , FZ concur. Then AX, BY ,
CZ concur.

Proof. Clearly, ∠AEX = ∠EDX и ∠XFA = ∠XDF . Also by the sines law

sin∠FAX

sin∠XFA
=

XF

AX
,

sin∠XAE

sin∠AEX
=

XE

AX
.

Therefore

sin∠BAX

sin∠XAC
=

sin∠FAX

sin∠XAE
=

XF

XE
· sin∠XFA

sin∠AEX
=

XF

XE
· sin∠XDF

sin∠EDX
=

(
sin∠XDF

sin∠EDX

)2

.

Similarly
sin∠CBY

sin∠Y BA
=

(
sin∠Y ED

sin∠FEY

)2

;
sin∠ACZ

sin∠ZCB
=

(
sin∠ZFE

sin∠DFZ

)2

.

Hence
sin∠BAX

sin∠XAC
· sin∠CBY

sin∠Y BA
· sin∠ACZ

sin∠ZCB
= 1.

and the assertion of the lemma follows from the Ceva theorem.

Return to the problem.

Denote by O(ABCD) the cross ratio of lines OA, OB, OC, OD. Let J be the common
point of FT and ES, G be the second common point of AD and ω, K be the common
point of EF and BC (fig. 17).
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Fig. 17
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Since ∠FMS = ∠FBS, ∠MES = ∠BFS, we obtain that the triangles SBF and SME
are similar. Thus SE : SF = ME : BF = AB : BF . Then

E(AFJD) = E(EFSD) = (EFSD) =
SE

SF
:
DE

DF
=

AB

BF
· DF

DE
.

Similarly

F (AEJD) =
AC

CE
· DE

DF
.

And so
E(AFJD) : F (AEJD) =

AB

AC
· CE

BF
· DF 2

DE2
=

AB

AC
· CE

BF
· KF

KE
.

Applying the Menelaos theorem to the triangle AEF and points K,B,C, we obtain

AB

BF
· FK

KE
· EC

CA
= 1.

Therefore E(AFJD) = F (AEJD), i.e. A, J , D are collinear. Hence DG, ES, and FT
concur at J , and by the lemma BS, CT , and AG concur.

18. (9–11, D.Shvetsov) Let AA1, BB1, CC1 be the altitudes of an acute-angled triangle ABC;
Ia be its excenter corresponding to A; I ′a be the reflection of Ia about the line AA1. Points
I ′b, I ′c are defined similarly. Prove that the lines A1I

′
a, B1I

′
b, C1I

′
c concur.

First solution. The lines A1A, A1B, A1A
′, and A1Ia form a harmonic quadruple.

Therefore their meeting points with AL also form a harmonic quadruple. Since the fourth
harmonic point for A, L, Ia coincide with the incenter I of triangle ABC, we obtain that
A1A

′ passes through I. Similarly B1B
′ and C1C

′ pass through I.

this reasoning can be modified. Since A1A, A1B, A1I, and A1Ia form a harmonic quadruple,
and A1A ⊥ A1B, the lines A1A and A1B bisect the angles between A1I and A1Ia.
Therefore A1A

′ passes through I.

Second solution. Prove that A1Ia, B1Ib, C1Ic concur. then their reflections A1A
′, B1B

′,
C1C

′ about the bisectors of triangle A1B1C1 also concur. Note that for example sin∠IbIaA1 :
sin∠IcIaA1 = (BA1 : CA1) · (IaC : IaB). Applying the Ceva theorem to the lines IaA,
IbB, IcC and AA1, BB1, CC1 we obtain that the product of this ratio and two similar
ones equals 1.

Remark. The assertion of the problem is a partial case of the following fact. If points
A1, B1, C1 lie n the sidelines BC, CA, AB of triangle ABC, and points A2, B2, C2 lie on
the sidelines B1C1, C1A1, A1B1 of triangle A1B1C1, in such a way that AA1, BB1, CC1

concur, and A1A2, B1B2, C1C2 concur, then AA2, BB2, CC2 also concur.

19. (10–11, M.Evdokimov) A triangle ABC, its circumcircle, and its incenter I are drawn on
the plane. Construct the circumcenter of ABC using only a ruler.

Solution. Construct the common point C1 of tangents to the circle at points A, B and the
second common point C2 of the circle and the line CI. The line C1C2 is the perpendicular
bisector to the segment AB therefore it passes through the circumcenter. Constructing
similarly the perpendicular bisector to AC find the circumcenter.
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20. (10–11, L.Shatunov) Lines a1, b1, c1 pass through the vertices A, B, C respectively of a
triangle ABC; a2, b2, c2 are the reflections of a1, b1, c1 about the corresponding bisectors
of ABC; A1 = b1 ∩ c1, B1 = a1 ∩ c1, C1 = a1 ∩ b1, and A2, B2, C2 are defined similarly.
Prove that the triangles A1B1C1 and A2B2C2 have the same ratios of the area and the
circumradius (i.e. S1

R1
= S2

R2
, where Si = S(△AiBiCi), Ri = R(△AiBiCi)).

Solution.

Lemma. Let X ′, Y ′, Z ′ lie on the sides Y Z, ZX, XY respectively of triangle XY Z.
Then

SX′Y ′Z′ =
XY ′ · Y Z ′ · ZX ′ +X ′Y · Y ′Z · Z ′X

4RXY Z

.

(the points X ′, Y ′, Z ′ may also lie on the extensions of the sides. In this case we have to
consider the segments in the formula as oriented.)

Proof. Let XY ′ = αXZ, Y Z ′ = βY X, ZX ′ = γZY . Then SX′Y ′Z′ : SXY Z = 1 − α(1 −
β)− β(1− γ)− γ(1− α) = αβγ + (1− α)(1− β)(1− γ) and the assertion of the lemma
follows from the formula SXY Z = (XY · Y Z · ZX)/4RXY Z .

Now apply the lemma to the triangle A1B1C1 and A, B, C on its sidelines. Denoting
∠B1AC = α, ∠C1BA = β, ∠A1CB = γ we obtain (using the sines law for the triangles
AB1C1, BC1A1, CA1B1)

SABC =
AB ·BC · CA(sinα sin β sin γ + sin(A+ α) sin(B + β) sin(C + γ))

4R1 sin∠A1B1C1 sin∠B1C1A1 sin∠C1A1B1

.

Applying the sines law to the triangle A1B1C1 we obtain that the denominator equals
2S1/R1. Finally note that if we replace the triangle A1B1C1 to A2B2C2 the numerator do
not change.

21. (10–11, A.Zaslavsky) A chord PQ of the circumcircle of a triangle ABC meets the sides
BC, AC at points A′, B′ respectively. The tangents to the circumcircle at A and B meet
at point X, and the tangents at points P and Q meet at point Y . The line XY meets
AB at point C ′. Prove that the lines AA′, BB′, and CC ′ concur.

Solution. Let PQ and AB meet at point U , AA′ and BB′ meet at point V . Then the
line XY is the polar of U with respect to the circumcircle, therefore A, B, U , C ′ form a
harmonic quadruple. Thus CV passes through C ′.

22. (10–11, D.Reznik, A.Akopyan) A segment AB is given. Let C be an arbitrary point of
the perpendicular bisector to AB; O be the point on the circumcircle of ABC opposite
to C; and an ellipse centered at O touch AB, BC, CA. Find the locus of touching points
of the ellipse with the line BC.

Answer. The circle with diameter BQ, where Q is a point on the ray AB such that
AQ = 3AB/2, without B and Q.

Solution. Let M be the midpoint of AB, N be the reflection of M about O, Pbe the
common point of PN and BC, U , V be the common points of the line passing through
N and parallel to AB with BC, AC respectively (fig. 22). Since the triangles BPQ and
UPN are similar we have BP : PN = BQ : UN = AB : UV , i.e. the line passing
through P and parallel to AB passes through the common point of diagonals of trapezoid
ABUV . Therefore the ellipse inscribed into the trapezoid touches BC at point P . Since
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PN ∥ OB ⊥ BC this point lies on the circle with diameter BQ. It is clear that all points
of this circle distinct from B and Q belong to the required locus.
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Fig. 22

23. (10–11, I.Kukharchuk) A point P moves along a circle Ω. Let A and B be fixed points of Ω,
and C be an arbitrary point inside Ω. The common external tangents to the circumcircles
of triangles APC and BCP meet at point Q. Prove that all points Q lie on two fixed
lines.

Solution. The common point of external tangents is the center of circle ω such that
the inversion with respect to it swaps the circles APC and BPC. Consider an inversion
centered at C transforming A, B, P to A′, B′, C ′ respectively. It maps the circles APC,
BPC to the lines A′P ′, B′P ′ respectively, the image of ω is the bisector of some angle
between these lines, and the image of Q is the reflection Q′ of C about this bisector.
Since the bisectors of angles between P ′A′ and P ′B′ pass through two fixed points — the
midpoints of arcs A′B′ of circle A′B′P ′, all points Q′ lie on two circles centered at these
points and passing through C. The considered inversion maps these circles to two fixed
lines.

Remark. The point Q jumps from one line to he second one when P intersect one of
lines AC, BC.

24. (11, Tran Quang Hung, N.Dergiados) Let SABC be a pyramid with right angles at the
vertex S. Points A′, B′, C ′ lie on the edges SA, SB, SC respectively in such a way that
the triangles ABC and A′B′C ′ are similar. Does this yield that the planes ABC and
A′B′C ′ are parallel?

Answer. Yes.

First solution. Suppose that the planes ABC and A′B′C ′ are not parallel. Then apply
the homothety centered at S mapping A′B′C ′ to a triangle congruent to ABC, and
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transform the obtained triangle to ABC by an isometry of the space. The image of S is a
point S ′ distinct from S and its reflection about the plane ABC. On the other hand both
points S, S ′ lie on three spheres with diameters AB, BC, CA. Since the centers of these
spheres are not collinear they have only two common points symmetric with respect to
the plane ABC — contradiction.

Second solution. Let A′B′ = tAB. Then B′C ′ = tBC, C ′A′ = tAC. Since the angles at
S are right we have SA′2 + SB′2 = t2AB2, SA′2 + SC ′2 = t2AC2, SB′2 + SC ′2 = t2BC2.
From this we obtain that SA′2 = t2(AB2 + AC2 − BC2)/2 = t2SA2, i.e. SA′ = tSA.
Similarly SB′ = tSB, SC ′ = tSC and therefore the planes ABC and A′B′C ′ are parallel.
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