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1. (I.Kukharchuk, E.Galakhova.) A cyclic pentagon ABCDE is given. The
diagonals AC and CE are equal and meet BD at points M and N respectively.
It is known that BM = ND, BC ̸= CD. Prove that the reflection of C about
the midpoint of BD lies on AE.

Solution. From the assumption we have CM ·MA = BM ·MD = DN ·
BN = CN · NE. Hence CM = CN or CM = EN . The first case is
impossible because BC ̸= CD, in the second case the midpoint of MN
lies on the medial line of triangle ACE (fig. 8.1), which is equivalent to the
required assertion.
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Fig. 8.1.

2. (L.Emelyanov) Let CH be an altitude of triangle ABC; and CA′, CB′ be
bisectors of triangles CBH, CAH respectively. Prove that the circumcenter
of triangle CA′B′ coincides with the incenter of triangle ABC if and only if
∠ACB = 90◦.

Solution. Let the incenter I of triangle ABC coincide with the circumcenter
of triangle A′B′C. Then it lies on the circumcircle of triangle A′BC as the
common point of the bisector of angle B and the perpendicular bisector to
A′C. Therefore ∠CIB = ∠CA′B. Similarly ∠CIA = ∠CB′A (fig. 8.2).
Thus ∠AIB = 180◦−∠A′CB′. On the other hand ∠AIB = 90◦+∠A′CB′,
which yields ∠C = 2∠A′CB′ = 90◦. Similarly we obtain the converse.
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Fig. 8.2.

3. (F.Nilov) Can we choose more than six points on the plane not on a single
line, and color them into three colors so that any line through two marked
points of different colors contains exactly one more marked point, of the
remaining color?
Answer. Yes, we can.
Solution. Let points A1, B1, C1 lie on a line ℓ1, points A2, B2, C2 lie on a
line ℓ2, the lines A1B2 and A2B1 meet at point C3, the lines A1C2 and A2C1

meet at point B3, the lines B1C2 and B2C1 meet at point A3. Then by the
Pappus theorem A3, B3, C3 are collinear (fig. 8.3). Now coloring A1, A2, A3

into the first color, B1, B2, B3 into the second color, and C1, C2, C3 into the
third one we obtain the required configuration.
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Fig. 8.3.

Remark. Using the addition of points on a cubic we can construct an
example with an arbitrary great number of points: take a point P such that



3nP = 0 and color all points 3kP into the first color, all points (3k + 1)P
into the second one, and all points (3k − 1)P into the third color.

4. (L.Shatunov) Let AA1 and CC1 be bisectors of a triangle ABC, and B0 be
the midpoint of the arc AC on the circumcircle of △ABC, not containing
B. The circumcircles of triangles AA1B0 and CC1B0 meet the lines BC and
AB at points P and Q respectively. Prove that the incenter of △ABC lies
on PQ.

First solution. Let the line passing through I and parallel to AC meet BC
at point P ′. Then ∠P ′IC = ∠ICA = ∠ICP ′, therefore IP ′ = P ′C. On the
other hand IB0 = B0C, thus the triangles P ′IB0 and P ′CB0 are congruent,
i.e. ∠B0P

′C = (180◦ − ∠C)/2 = ∠IAB0 = ∠CPB0, and P ′ coincides with
P . Similarly IQ ∥ AC (fig. 8.4).
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Fig. 8.4.

Second solution. Let A0, C0 be the midpoints of arcs BC, AB; and P ′ be
the common point of A0B0 and BC. Then AA1P

′B0 is a cyclic quadrilateral,
because ∠AB0A0 = ∠BA1A, thus P ′ coincides with P . Similarly Q lies on
B0C0. Applying the Pascal theorem to the hexagon ABCC0B0A0 we obtain
the required.
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5. (M.Volchkevich) The distance from the vertex of the right angle of a right-
angled triangle to the bisector of its acute angle equals a quarter of its
hypotenuse. Find all possible values of the angles of this triangle.

Answer. 60◦ and 30◦, or 36◦ and 54◦.

Solution. Let M be the midpoint of the hypotenuse AB of triangle ABC,
and L be the reflection of C about the bisector of angle A. Then CL =
AB/2 = CM , and two cases are possible.

1. Points M and L coincide. Then the bisector of angle A of triangle ACM
coincides with the altitude of this triangle, therefore AC = AM = CM , and
∠A = 60◦.

2. Points M and L are different. Then AC = AL, and LC = CM = MA.
Therefore ∠ALC = ∠LMC = 2∠A (fig. 8.5). On the other hand 2∠ALC+
∠A = 180◦. Thus ∠A = 36◦.
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Fig. 8.5.

6. (I.Mikhailov) Let ABCD be a convex quadrilateral with ∠ABD = ∠ACD =
90◦. Two circles with diameters AB and CD meet at points P and Q. Prove
that 2PQ < AD.

Solution. Let K, L be the projections of B, C to AD. Then the circles with
diameters AB, CD pass through K and L respectively, and their common
points P , Q lie on the arcs BK and CL (fig. 8.6). Since ∠BAK < 90◦, we



obtain that PQ ≤ BK ≤ AD/2, an equality is possible only when B and C
coincide.
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Fig. 8.6.

7. (K.Belsky) A regular triangle ABC is inscribed into a circle Ω. Circles ΩA,
ΩB, ΩC centered at A, B, C respectively pass through a point P lying on Ω
and have a common tangent. Prove that there exists a line touching two of
these circles and passing through some vertex of ABC.

First solution. Let P lie on the arc AB of Ω. Then by the Pompeiu theorem
PC = PA+PB, hence the length of a common tangent to ΩA and ΩC equals√
AC2 − (PC − PA)2 =

√
BC2 − PB2, i.e. the length of a tangent from C

to ΩB. Similarly the length of a common tangent to ΩB and ΩC equals to the
length of a tangent from C to ΩA. Also, since ΩA, ΩB, ΩC have a common
tangent, the length of a common tangent to one pair of these circles equals
the sum of the lengths of common tangents to two remaining pairs. Thus we
obtain the same equality for the lengths of tangents from C to ΩA, ΩB and
the length of a common tangent to these circles. Therefore one of common
tangents to ΩA, ΩB passes through C.

Second solution. Let ℓ be the common tangent to ΩA, ΩB, and ΩC . Supposing
that P lies on the arc AB let us prove that the reflection of ℓ about AB passes
through C, i.e. C lies on the common tangent to ΩA, ΩB. It is sufficient to
prove that the reflection C ′ of C about the midpoint M of AB lies on ℓ.
Since PC = PA+ PB, the distance from M to ℓ equal to (PA+ PB)/2 is
twice as little than the distance from C to ℓ. Therefore reflecting C about
M we obtain a point lying on ℓ (fig. 8.7).



C

C ′

BA

P
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Remark. Any point P satisfying the assumption is a common point of
the circumcircle and some excircle of the triangle. In this case three circles
centered at A, B, C, and passing through P have a common tangent for an
arbitrary triangle.

8. (A.Blinkov) Let ABCDE be a paper pentagon with AB = AE, ∠A =
∠B = ∠E = 90◦, BC = 3, CD = 5, DE = 2. Construct a perpendicular
from A to CD using only a ruler and drawing not more than six lines. All
lines have to be drawn inside the pentagon.

Solution. A circle centered at A with radius AB touches the lines BC and
DE. Since CB + DE = CD, this circle touches also the line CD, i.e. CA
and DA are the bisectors of angles C and D respectively, and ∠CAD = 45◦.



Let AK be the altitude of triangle ACD, and M , N be the common points
of BE with AC and AD respectively. Then BC=CK, DE = DK, and
∠CKM = ∠CBM = ∠DEN = ∠DKN = 45◦ = ∠A. Therefore DM and
CN are the remaining altitudes of triangle ACD (fig. 8.8). From this we
obtain the following construction
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Fig. 8.8.

1–3. Draw the lines AC, AD, BE and mark the points M , N .

4–5. Draw the lines DM , CN and mark their common point H.

6. Draw the required line AH.
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1. (Ya.Scherbatov) Altitudes AA1, BB1 of a triangle ABC meet at point H.
Let A′, B′ be the reflections of A, B about BB1, AA1 respectively. Prove
that the nine-points circles of triangles A′B′C and A′B′H are tangent.

Solution. Let K, M1, N1, M2, N2 be the midpoints of A′B′, CB′, CA′,
HB′, HA′ respectively. Then we have to prove that ∠M1KM2 = ∠M1N1K+
∠M2N2K. Since ∠M1KM2 = ∠CA′H, ∠M1N1K = ∠KB′C, and ∠KN2M2 =
∠HB′K, this is equivalent to the equality of angles CA′H and HB′C. But
∠HA′A = ∠A′AH = ∠HBB′ = ∠BB′H = π/2 − ∠C, which yields the
required equality (fig. 9.1).
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Fig. 9.1.

2. (F.Nilov) On the plane, several points are marked and colored into four
colors so that any three points of different colors are not collinear, and any
circle through three marked points of different colors contains exactly one
marked point of the remaining color. Is it necessary that all marked points
are concyclic?

Answer. No, it is not.



Solution. Consider the complete quadrilateral formed by lines A1B1, A1B2,
A2B1, A2B2. Let the lines A1B1 and A2B2 meet at point C1 and the lines
A1B2 and A2B1 meet at point C2. Then the circles A1B1C2, A1B2C1, A2B1C1,
A2B2C2 meet at the Miquel point D2. Make an inversion centered at an
arbitrary point D1 not lying on constructed lines and circles, and color the
maps of A1, A2 into the first color, the maps of B1, B2 into the second one,
the maps of C1, C2 into the third color, D1 and the map of D2 into the fourth
one. These eight points satisfy the assumption.

Remark. Another solution may be obtained from the addition of points on
a circular cubic. Let A, B, C, D be the common points of such cubic with
an arbitrary circle, and K1, K2, K3 be three points of the cubic such that
2Ki = 0. Then coloring A, A +Ki into the first color, B, B +Ki into the
second one, C, C +Ki into the third color, and D, D +Ki into the fourth
one we obtain 16 points satisfying the assumption.

3. (L.Emelyanov) A triangle ABC is given. A line m1 meets BC, CA, AB at
points A1, B1, C1 respectively, and a line m2 meets BC, CA, AB at points
A2, B2, C2, so that A1 and A2 are symmetric about the midpoint of BC, B1

and B2 are symmetric about the midpoint of CA, C1 and C2 are symmetric
about the midpoint of AB. Prove that m1 ⊥ m2 if and only if m1 and m2 are
two Simson lines of triangle ABC (for some two points of the circumcircle
of ABC).

First solution. The lines A1B1C1 and A2B2C2 generate a linear family of
triangles AtBtCt, where At, Bt, Ct divide the segments A1A2, B1B2, C1C2

in the same ratio. This family contains the medial triangle A0B0C0 and two
degenerate triangles A1B1C1 and A2B2C2.

If two triangles of such family are orthologic, then two arbitrary triangles
of the family are also orthologic. Hence m1 ⊥ m2 yields that A1B1C1

and A0B0C0 are orthologic, i.e. the perpendiculars from A1, B1, C1 to the
corresponding sidelines of ABC concur at some point P . Then P lies on the
circumcircle of ABC and m1 is its Simson line. Similarly m2 is the Simson
line of the opposite point on the circumcircle. Conversely, if m1, m2 are
Simson lines, then AtBtCt are pedal triangles of a linearly moving point Pt.
Since this family contains the medial triangle, the corresponding line passes
through the circumcenter O, thus m1 and m2 are perpendicular.

Second solution. Let the homothety centered at the centroid of ABC with
coefficient −1/2 map m2 to a line m′

2. Note that this homothety maps A2,



B2, C2 to the midpoints of AA1, BB1, CC1. Therefore m′
2 is the Gauss line

of the quadrilateral formed by the sidelines of ABC and m1. It is known that
the Gauss line is perpendicular to the Simson line of the Miquel point, i.e. it
is parallel to m1. This is possible only if m1 coincides with the Simson line
of the Miquel point. Since the Miquel point lies on the circumcircle of ABC,
we obtain the required.

Remark. The Simson lines of any two opposite points satisfy the assumption
(fig. 9.3).
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Fig. 9.3.

4. (E.Volokitin) Let ABCD be a cyclic quadrilateral. Two lines passing through
the orthocenter H of the triangle ABC and parallel to BD and CD meet
AC and AB respectively at points E and F . Prove that the line EF bisects
the segment DH.

First solution. The midpoint of DH is the center of an equilateral hyperbola
ABCDH. Let B′, C ′ be the points of this hyperbola opposite to B, C
respectively. Then HB′ ∥ BD, HC ′ ∥ CD, and applying the Pascal theorem
to the hexagon ABB′HC ′C we obtain the required.

Second solution. Let O be the circumcenter of ABC. Note that ∠EHF =
∠A, hence there exists a point isogonally conjugated to H with respect to



the quadrilateral BFEC, and this point coincides with O. Let X and C1

be projections of H to BF and EF respectively. Denote by M and C ′ the
projection of O to EF and the midpoint of CH respectively. Then M , C ′, X,
C1 lie on the nine-points circle of triangle ABC, because the pedal circles of
O and H with respect to BEFC coincide. From the Fuss lemma we obtain
that FH ∥ C ′M , thus the homothety centered at H with coefficient 2 maps
M to D.

Third solution. Let Hb, Hc be the meeting points of altitudes of ABC with
the circumcircle; Qb, Qc be the projections of D to AC, AB respectively;
Db, Dc be the meeting points of these perpendiculars with the circumcircle;
Pb, Pc be their common points with the altitudes. Note that BDbDHb is an
isosceles trapezoid, thus ∠DBHb = ∠EHbH = ∠EHHb, i.e. HE ∥ BD, and
E lies on HbDb. Similarly F lies on HcDc. Applying the Pascal theorem to the
hexagon HbDbDACHc we obtain that EPc passes through the common point
of AD and HbHc (fig. 9.4). Similarly PbF passes through this point. Then by
the Desargues theorem the triangles FPcQc and EPbQb are perspective, but
PbPc bisects DH as a diagonal of parallelogram HPbDPc, and QbQc bisects
it as the Simson line of D.
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5. (I.Mikhailov) Let BE and CF be altitudes of a triangle ABC. The internal
bisectors of angles B and C meet at point I, and the external ones meet at
point J . Prove that IJ > EF .

Solution. By the trident theorem B and C lie on the circle with diameter
IJ , therefore BC ≤ IJ . On the other hand, from the similarity of triangles
ABC and AEF we have EF = BC cos∠A < BC.

6. (ALEPH1/D.Brodsky) A triangle ABC is inscribed into a circle ω. The
tangents to ω at points B and C meet at point S. The segments AS and BC
meet at point P . The bisectors (the rays) of angles APC and SPC meet ω
at points X and Y respectively. Prove that X, Y , and S are collinear.

Solution. Let us prove a general assertion: if a line passing through S meets
ω at points U , V , then the quadruple of lines PA, PB, PU , PV is harmonic.

Consider a projective transformation fixing ω and mapping P to its center.
It maps BC and AS to perpendicular diameters of the circle, and maps U ,
V to points symmetric about BC. The required assertion is evident.

7. (ALEPH/N.Shteinberg, A.Naumenja) A triangle ABC is given. Let D be
an arbitrary point on the perpendicular bisector to BC, lying outside the
triangle. The lines BD and AC meet at point C ′, and the lines CD and AB
meet at point B′. A point Ma is the midpoint of BC, and M is the second
common point of circles (BB′D) and (CC ′D). Prove that the circumcenter
of DMMa lies on a fixed line.

Solution. Let Ha be the common point of the A-Apollonius circle of ABC
and the median AMa. Let us prove that Ha, D, Ma, M are concyclic, this
clearly yields the required assertion.

Since M is the Miquel point of lines AB′, CB′, AC ′, BC ′, we obtain that
ABM ∼ MDC, therefore MB

AB = MD
DC = MD

DB = MC
AC , i.e. M lies on the

Apollonius circle.

Let A′ be the reflection of A about BC, A′ also lies on the Apollonius circle.
1https://aleph-problems.com/



Let us prove that A′, M , D are collinear. When D moves along the perpendicular
bisector to BC, M projectively moves along the circle, thus it is sufficient to
prove this for three positions of D.

If D is infinite, then M coincides with A, and the assertion is correct.

If D is the circumcenter of A′BC, then M coincides with A′, because the
triangles A′DC and A′BA are similar. Also the tangent to the Apollonius
circle at A′ passes through D, because this circle is perpendicular to the
circumcircle of A′BC.

If D lies on the circle A′DC, then A′D is the bisector of triangle BA′C,
and M is the foot of this bisector because the triangles MDC, MBA′, and
MBA are similar.

Finally note that MaD ∥ AA′, thus by the inverse Fuss lemma Ha, Ma, M ,
D are concyclic (fig.9.7).
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8. (S.Arutyunyan) Restore a bicentral quadrilateral ABCD by the incenter I,
the common point E of tangents to the circumcircle at points A, C, and the
common point F of tangents to the circumcircle at points B, D.
Solution. Let us prove two facts.
Lemma 1. EI ∥ BD, FI ∥ AC.
Proof. Suppose that AB ≥ AD. Then

∠AIC = ∠IAB + ∠ICB + ∠B =
π

2
+ ∠B = π − ∠AEC

2
,

therefore E is the circumcenter of AIC, and

∠(IE,AC) = ∠EIC + ∠ICA =
π

2
− ∠IAC + ∠ICA =



=
π

2
−∠BAC − ∠CAD

2
+
∠BCA− ∠ACD

2
=

⌣ BC+ ⌣ AD

2
= ∠(BD,AC).

Similarly FI ∥ AC.
Lemma 2. Let AC and BD meet EF at points K, L respectively. Then
∠EIK = ∠FIL = π/2.
Proof. Let O be the circumcenter of the quadrilateral, and OI meet EF at
point P . Since EF is the polar of the common point of diagonals, lying on
OI, we have EF ⊥ OI, and P lies on the circle with diameter EI , touching
the circle AIC by lemma 1. Also A, C, P lie on the circle with diameter OE.
Thus K is the radical center of circles ACE, IPE, AIC, and ∠EIK = π/2.
Similarly ∠FIL = π/2.
From these lemmas we obtain the following construction.
1. Draw the lines through I perpendicular to EI, IF and mark the points
K, L.
2. Draw the lines k, ℓ passing through K, L and parallel to IF , IE respectively.
3. Construct the orthocenter O of triangle IEF and the circle with diameter
OE, it meets k at points A, C. Similarly construct the points B and D (fig.
9.8).
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1. (I.Bogdanov) Two parallelograms KL1M1N1 and KL2M2N2 are inscribed
into a convex quadrilateral ABCD in such a way that K is the midpoint of
AB, L1, M1, N1 and L2, M2, N2 lie on the sides BC, CD, DA respectively.
Can the area of one parallelogram be less than a half of the area of the
quadrilateral, and the area of the second one be greater than the half of the
area of the quadrilateral?
Answer. No, they cannot.
Solution. Suppose that ∠A + ∠B < π. Fix an arbitrary parallelogram
KLMN such that N lies on the segment AP , L lies on the segment BP ,
and M lies inside the triangle ABP , where P is the common point of the lines
AD and BC. Let an arbitrary line passing through M meet the segments
BP , AP at a points C ′, D′ respectively (fig. 10.1). It is known that the area
of triangle PC ′D′ is minimal, when M bisects C ′D′. In this case KLMN is
the Varignon parallelogram of the quadrilateral ABC ′D′ and its area equals
a half of the area of this quadrilateral. Thus the areas of both parallelograms
KL1M1N1 and KL2M2N2 are not less than the half of the area of ABCD.
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Fig. 10.1.

Similarly we obtain that if ∠A+∠B > π, then the areas of both parallelograms
are not greater than the half of the area of the quadrilateral. Finally, if



AD ∥ BC, then the areas of both parallelograms are equal to the half of the
area of the quadrilateral.

2. (E.Volokitin) Let I be the incenter of a scalene triangle ABC; and P , Q be
two isogonal points such that AP ∥ IQ ∥ BC. Prove that AP = |AB−AC|.
Solution. For any point P ′ such that AP ′ ∥ BC the sum of oriented areas of
triangles P ′AB and P ′CA equals zero, and the ratio of these areas and the
area of triangle P ′BC equals ±AP ′/BC. Take a point P ′ such that the ratio
of oriented areas is SP ′BC : SP ′CA : SP ′AB = a : (b− c) : (c− b). Then for the
isogonal point Q′ we have SQ′BC : SQ′CA : SQ′AB = a : b2/(b− c) : c2(c− b),
therefore SQ′BC : SABC = a : (a+b+c), i.e. Q′I ∥ BC. Hence P ′, Q′ coincide
with P , Q.

Remark. Here is an idea of another solution.

Let a, b, c, p be the sidelengths and the semiperimeter of ABC. Denote
by X the second common point of IQ and the circumcircle of BIC. Then
BIXC is an isosceles trapezoid. Therefore the projection of IX to BC equal
|(p−b)− (p−c)| = |b−c|. Hence it is sufficient to prove that IX = AP . Let
X ′ be isogonally conjugated to X with respect to ABC. Then X and X ′ are
symmetric about AI, thus we have to prove that P and X ′ are symmetric
about the perpendicular bisector to AI. Let C be the isogonal map of IQ
with respect to ABC. Then A, B, C, I, X ′, P lie on the hyperbola C, and the
lines AQ and IQ touch it. Since IQ = AQ, we obtain that the perpendicular
bisector to AI is an axis of C. Then the reflection about it maps P to X ′.

3. (E.Alkin, A.Skopenkov) Do there exist six point A1, . . . , A6 in general position
in the space, such that the triangles A1A2A3 and A4A5A6 are linked, and
two triangles corresponding to any other dividing of these points into two
triplets are not linked. Two triangles on the space are linked if the outline of
one triangle meets the inside of the second one at a unique point.

Answer. Yes, they do.

Solution. Take two congruent regular pyramids with common base A1A2A3

and vertices A4, A5 symmetric about the base. Take point A6 on the plane
passing through A1A4 and the altitude of triangle A5A2A3, inside the angle
vertical to the angle containing A1, A4, A5 (fig. 10.3). Then all segments
A6Ai, i = 1, . . . , 5, lie outside the bipyramid A1A2A3A4A5, and the points
A1, . . . , A6 satisfy the assumption.
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4. (S.Kuznetsov) Let M , H, L be the centroid, the orthocenter, and the Lemoine
point respectively of a triangle ABC. A point S is such that the circles SLH,
SML touch MH, and L′ is the reflection of L about the circumcircle of the
triangle. Prove that SL′ ∥ MH.

First solution. Use the following property of an equilateral hyperbola.

Let points A, B lie on an equilateral hyperbola centered at O. The tangents
to the hyperbola at A, B meet at point S. Then O is the Humpty point of
triangle SAB corresponding to S.

In fact, construct a rectangle AUBV with the sides parallel to the asymptotes
of the hyperbola. The points U , V , O, S are collinear and form a harmonic
quadruple, therefore O and S are inverse about the circle with diameter AB.

Apply this property to the Kiepert hyperbola ABCMH. The tangents to
it at M , H meet at L, therefore S is the center of the hyperbola, i.e. the
midpoint of segment T1T2 between two Torricelli points. On the other hand
L′ is the midpoint of segment T ′

1T
′
2 between two Apollonius points. But

T1T
′
1 ∥ T2T

′
2 ∥ MH (fig. 10.4).
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Second solution. Let Γ be an ellipse with foci O,H inscribed into ABC.
Rotate ABC by Poncelet between its circumcircle and Γ. We have that
H is the orthocenter of all triangles ABC as the isogonal image of the
circumcenter O, hence the centroid M and the nine-points circle of ABC
are also fixed. The point S lies on the nine-points circle, because it is the
center of the Kiepert hyperbola, therefore its inversion image — the point L
moves along a circle ∆ with a center lying on MH, and O is the reflection of
the midpoint of MH about this circle. The point L′ as the inversion image
of L about the circumcircle of ABC also moves along some circle, and the
angle velocities of L′ and S are equal. It is easy to see that the radius of this
circle equals the radius of the nine-points circle. Therefore SL′ ∥ MH.

Remark. The points S and L′ are symmetric about the circumcircle and
the point M .
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5. (K.Belsky) Let P be a random point inside a regular triangle ABC. Find
the probability that there exists an acute-angled triangle with the sidelengths
AP , BP , CP .

Answer. 4− 2π√
3
.

Solution. Consider a rotation by π/3 about C, mapping A to B, and P to a
point Q. We have BQ = AP , PQ = CP (because CPQ is a regular triangle),
therefore the sidelengths of triangle PBQ are equal to the lengths of segments
AP , BP , CP . Also ∠PQB = ∠CQB − π/3 = ∠CPA − π/3 (fig.10.5.1).
Similarly two remaining angles equal ∠APB−π/3 and ∠BPC−π/3. Thus
this triangle is acute-angled if and only if all sides of ABC are seen from P
at angles less than 5π/6.

A B

C

P

Q

Fig. 10.5.1.

Let A′, B′, C ′ be the reflections of A, B, C about the opposite sidelines of
ABC. Then AB is seen at the angle 5π/6 from the points of arc centered at
C ′ with radius C ′A = AB. This arc and two arcs constructed similarly for
the remaining sides are pairwise tangent at the vertices of ABC (fig.10.5.2).
Hence the area of a curvilinear triangle limited by these arcs equals the
difference of the area of A′B′C ′ and the areas of three sectors with radius
AB and angle π/3, i.e.

√
3−π/2 (if AB = 1). Dividing by the area of ABC

we obtain the required probability.
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Fig. 10.5.2.

6. (Ya.Scherbatov) Circles Ω and ωa are the circumcircle and the A−excircle of
some triangle ABC. Let Ib, Ic be the centers of two remaining excircles, and
Ab, Ac be the touching points of the extensions of AB, AC with ωa. Prove
that the meeting point of the lines AbIb and AcIc does not depend on the
triangle ABC.

Solution. Let Ω and ωa meet at points P and Q, and the lines PQ and
AB meet at point X. Since PQ is the radical axis of Ω and ωa, and AB is
the radical axis of Ω and the circle IbABIa, we obtain that X lies on the
radical axis of ωa and the circle with diameter IbIa, i.e. on the polar of Ib
with respect to ωa. Thus the polars with respect to ωa of Ab and Ib meet on
PQ, therefore IbAb passes through the common point Y of tangents to ωa at
P , Q. Similarly AcIc passes through Y , and Y clearly does not depend on
ABC (fig.10.6).
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Fig. 10.6.

7. (M.Vekshin) Let ABCD be a cyclic quadrilateral. An arbitrary conic passes
through A, B, C, D. Consider four lines which are the isogonal maps of this
conic with respect to the triangles ABC, ABD, BCD, ACD. Prove that
the quadrilateral formed by these lines is circumscribed.

First solution. An equation of an arbitrary conic passing through A, B, C,
D is tF1(x, y)+(1− t)F2(x, y) = 0, where F1(x, y) = 0, F2(x, y) = 0 are the
equations of two parabolas passing through A, B, C, D. The isogonal maps
of all these conics with respect to ABC are parallel lines because the isogonal
map of D is infinite. Clearly, when t changes uniformly, the corresponding
line also moves uniformly. But the isogonal maps of circumparabolas touch
the circumcircle of ABCD. Therefore the maps of any conic touch the same
circle concentric with the circumcircle of ABCD.

Second solution. Denote by X and Y two infinite points of the given
conic. Let Xa and Ya be isogonally conjugated to X and Y with respect to
the triangle BCD. Note that

⌢

XaYa = 2∠(X,Y ), i,e. the length of this arc
is the same for all four triangles. Since the isogonal maps of a conic cut off
equal arcs, the distances from the circumcenter to these lines are equal.

Remark. If a conic is an ellipse, then X, Y , Xa, Ya are imaginary points,
but the equality

⌢

XaYa = 2∠(X, Y ) is correct.

Third solution. Prove that the isogonal images of any conic about the
triangles ABC and ABD are symmetric about the perpendicular bisector to
AB, this and similar assertions yield, that the distances from the circumcenter
to all lines are equal. The isogonal images of the conics about each triangle



form a pencil of parallel lines. It is easy to see that the lines of both pencils
form equal angles with AB, hence it is sufficient to prove that the corresponding
lines meet at the perpendicular bisector. It is clear that the correspondence
between the pencils is projective, and the infinite line corresponds to itself.
By the Sollertinsky lemma it is sufficient to find two conics, such that their
images meet on AB. This are two degenerated conics: AC ∪BD and AD ∪
BC.

8. (K.Belsky) Let ABC be an acute-angled triangle. A line ℓ meets the sides
AB, AC and the sideline BC at points C1, B1, A1 respectively. A circle
ωa touches BC at A1 and touches the minor arc BC of the circumcircle of
ABC. Circles ωb, ωc are defined similarly. Prove that these three circles have
a common tangent.

Solution. Let A2, B2, C2 be the touching points of the circumcircle of
ABC with ωa, ωb, ωc respectively. Then from the Archimedes lemma and
the property of a bisector we obtain that BC1

AC1
= BC2

AC2
. By the Ceva theorem

and the Menelaos theorem for ℓ the lines AA2, BB2, CC2 concur. Take an
inversion centered at A. We obtain the following problem.

The circle ωb touches the lines AC, BC at points B1, B2, and the circle ωc

touches AB, BC at points C1, C2 respectively. Let A2 be a point on BC
such that A2C · A2C2 = A2B · A2B2. Let us prove that there exists a circle
touching ωa, ωb, ωc and passing through A.

Construct a circle ω passing through A and touching internally ωb and ωc. Let
us prove that ω and ωa are tangent. Let ω meet BC at points X and Y . Let I1
and I2 be the incenters of triangles AXY and ABC. By the Sawayama lemma
B1B2 and C1C2 meet at point I1. Then the triangles BI2C and B2I1C2 re
homothetic. This yields that A2 lies on I1I2. Applying the inverse Sawayama
lemma to the tangent from A to ωa and the line BC we obtain the required
(fig. 10.8).
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Fig. 10.8.


