
XXI GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The correspondence round. Solutions

1. (8) (D.Shvetsov) Let I be the incenter of a triangle ABC, D be an arbitrary point of
segment AC, and A1, A2 be the common points of the perpendicular from D to the
bisector CI with BC and AI respectively. Define similarly the points C1, C2. Prove that
B,A1, A2, I, C1, C2 are concyclic.

Solution. Consider the configuration on fig. 1, for other cases the reasoning is similar.
Since DC2 ⊥ AI, we obtain that ∠C1C2I = ∠DC2I = ∠AIC − 90◦ = ∠ABI = ∠C1BI,
i.e. B, I, C1, C2 are concyclic. Similarly B, I, A1, A2 are concyclic. Also C1 and A1 are
the reflections of D about AI, CI respectively, hence ∠BC1I = ∠IDC = ∠IA1C, and
B, I, A1, C1 are concyclic. Thus all six points are concyclic.
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2. (8) (A.Kuznetsov) Four points on the plane are not concyclic, and any three of them are
not collinear. Prove that there exists a point Z such that the reflection of each of these
four points about Z lies on the circle passing through three remaining points.

Solution. Let A, B, C, D be the given points; K, L, M , N , P , Q be the midpoints of
segments AB, BC, CA, BD, CD, AD. The reflection of D about Z lies on the circle
ABC if and only if Z lies on the circle NPQ. Hence we have to prove that the circles
NPQ, KMQ, KLN , and LMP have a common point. Let Z be the second common point
of circles KLN and NPQ (fig.2). Then ∠LZN = ∠LKN = ∠CAD (we have the last
equality because KL ∥ AC and KN ∥ AD as the medial lines of triangles ABC, ABD
respectively). Similarly ∠NZP = ∠BAC, thus ∠LZP = ∠BAC = ∠LMP . Therefore Z
lies on the circle LMP . Similarly we obtain that Z lies on the circle KMQ.
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Remark. The assertion of problem may also be obtained from the fact that the nine-
points circles or triangles ABC, BCD, CDA, DAB have a common point. The point Z
is the reflection of this point about the centroid of A, B, C, D.

3. (8) (K.Belsky) An excircle centered at IA touches the side BC of a triangle ABC at point
D. Prove that the pedal circles of D with respect to the triangles ABIA and ACIA are
congruent.

Solution. Let P1, P2, Q1, Q2, R be the projections of D to AC, AB, IAC, IAB, AIA
respectively. Since P1, P2, R lie on the circle with diameter AD, and AR bisects the
angle P1AP2, we obtain that P1R = P2R. Also since the quadrilaterals CP1DQ1 and
IAQ1DR are cyclic, we obtain that ∠P1Q1R = ∠P1Q1D+∠DQ1R = ∠P1CD+∠DIAR =
(∠B+∠C)/2 (fig. 3). Similarly ∠P2Q2R = (∠B+∠C)/2. Since the equals chords of circles
P1Q1R and P2Q2R correspond to equal angles, These circles are congruent.
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Remark. We can also to prove that the circles P1Q1R and P2Q2R are tangent at R.

4. (8) (Y.Shcherbatov) Let AL be the bisector of a triangle ABC, X be an arbitrary point
on the external bisector of angle A, the lines BX, CX meet the perpendicular bisector
to AL at points P , Q respectively. Prove that A, X, P , Q are concyclic.

First solution. Let PQ meet AB at point Y . Then in the isosceles triangle AY L
∠ALY = ∠LAY = ∠LAC, therefore LY ∥ AC and XP : PB = AY : Y B = Y L :
Y B = AC : AB = CL : LB. Hence LP ∥ CX. Similarly LQ ∥ BX, i.e. LPXQ is a
parallelogram (fig. 4). Thus AQ = QL = XP , i.e. the trapezoid AXPQ is isosceles and
cyclic.
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Second solution. Let M be the midpoint of AL; the perpendicular ℓ from L to AL
meet BX and CX at points U and V respectively. If X moves uniformely along the
bisector, then U , V also move uniformely along ℓ. If X coincides with A or the foot of
the external bisector, then L bisects the segment UV . Thus this is correct for any point
X. Thus since the medial lines of trapezoids AXUL and AXLV lie on PQ, we have
MP = (AX + LU)/2, MQ = (AX − LY )/2. Hence MP +MQ = AX, which also yields
that the trapezoid AXPQ is isosceles.

Third solution. Let D and E be the common points of PQ with AB and AC respectively.
Then ADLE is a rhombus, and DL ∥ AC. From BP : BX = BD : BA = BL : BC
we have PL ∥ XC, ∠LPQ = ∠QXA, ∠APQ = ∠LPM = ∠AXQ, i.e. A, X, P , Q are
concyclic.

5. (8) (D.Shvetsov) Let M be the midpoint of the cathetus AC of a right-angled triangle
ABC (∠C = 90◦). The perpendicular from M to the bisector of angle ABC meets AB
at point N . Prove that the circumcircle of triangle ANM touches the bisector of angle
ABC.

Solution. Let P be the projection of M to the bisector of angle B, and O be the center
of circle AMN . Since P and C lie on the circle with diameter BM , we have ∠NMA =
∠PBC = ∠ABP . Then ∠AON = ∠ABC and ∠MAO = 90◦ − ∠ABC/2 − ∠BAC =
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∠NMA, i.e. AO ⊥ BP . The angle between the tangent to the circle at point Q opposite
to A and AB equals 90◦ − ∠QAN = ∠QBA, therefore this tangent coincide with BP
(fig. 5).
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6. (8–9) (L.Emelyanov) One bisector of a given triangle is parallel to one sideline of its Nagel
triangle. Prove that one of two remaining bisectors is parallel to another sideline of the
Nagel triangle.

First solution. Let the sides BC, CA, AB of triangle ABC touch the corresponding
excircles at points A′, B′, C ′ and the line C ′A′ be parallel to the bisector AA1 of angle
A. Since BC ′ = p− a, BA′ = p− c, BA1 = ac/(b + c), this is equivalent to the equality
a : (b+ c) = (p− c) : (p− a), which can be transformed to (p− a)(p− b) = p(p− c). We
obtain the same equality if B′C ′ is parallel to the bisector of angle B.

Second solution. Let 2α, 2β, 2γ be the values of the angles A, B, C; I, I ′ and I ′′ be the
centers of the incircle A-excircle, and B-excircle respectively; C ′A′ ∥ CII ′. It is known
that I ′C ′ ⊥ AB, I ′C ⊥ CI, hence CA′ = AC ′ = ra tg∠CI ′A′ = ra tg γ. The distance
from A′ to AI equals AC ′ sin γ. Since ∠BI ′A′ = β, ∠BI ′A = 180◦˘α˘(90◦ + β) = γ, we
have ∠AI ′A′ = γ − β. The distance from C ′ to AI ′ equals I ′C ′ sin∠AI ′C ′ = ra sin(γ −
β) = AC ′ sinα = ra tg γ cos(γ + β). Thus sin(γ − β) cos γ = cos(γ + β) sin γ. Therefore
sin2 γ sin β = cos2 γ sin β and γ = 45◦, ∠C = 90◦, ∠B′CI ′′ = ∠CI ′′B′ = 45◦, which
yields BA′ = AB′ = B′I ′′, ∠BI ′′B′ = 45◦ − ∠CI ′′B = β. This A′BI ′′B′ is an isosceles
trapezoud, and C ′B′ ∥ BI.

Remark. The assumption of the problem is correct for any right-angled triangle (fig. 6).
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7. (8–9) (Y.Shcherbatov) Let I, Ia be the incenter and the A-excenter of a triangle ABC;
E, F be the touching points of the incircle with AC, AB respectively; G be the common
point of BE and CF . The perpendicular to BC from G meets AI at point J . Prove that
E, F , J , Ia are concyclic.

Solution. Let J ′ be the common point of AI with the circle IaEF , the sideline BC meet
IaF , IaE at points X, Y and touch the incircle at point D. The triangles J ′EF and
IXY are orthologic, because Ia is their orthology center. Also −1 = (A,BC∩AI, I, Ia) =
(A,B,XI ∩ AB,F ), therefore XI passes through the common point of ED and AB.
Then IX ⊥ CF (fig. 7). Similarly IY ⊥ BE. Thus J ′G ⊥ XY , which yields the required
assertion.
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8. (8–9) (В.Конышев) (V.Konyshev) The diagonals of a cyclic quadrilateral ABCD meet
at point P . Points K and L lie on AC, BD respectively in such a way that CK = AP
and DL = BP . Prove that the line joining the common points of circles ALC and BKD
passes through the mass-center of ABCD.

Solution. Let M , N be the midpoints of AC and BD respectively, Q be the second
common point of AC with the circle BKD (fig. 8). Then the degrees of M with respect
to the circles ALC and BKD are equal to AC2/4 and MK · MQ respectively. Also
MK = MP = PK/2 = (PA−PC)/2, MQ = PB ·PD/PK = PA·PC/(PA−PC). From
this we obtain that the difference of degrees equals AP ·PC/4. Similarly the difference of
degrees of N with respect to these circles equals −PB · PD/4 = −PA · PC/4. Since the
difference of degrees is a linear function, the midpoint of MN lies on the radical axis.
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9. (8–9) (A.Mardanov, K.Mardanova) The line ℓ passing through the orthocenter H of a
triangle ABC (BC > AB) and parallel to AC meets AB and BC at points D and E
respectively. The line passing through the circumcenter of the triangle and parallel to the
median BM meets ℓ at point F . Prove that the length of segment HF is three times
greater than the difference of FE and DH.

Solution. Let BM meet DE at point N (fig. 9). Then NF = HN/2 and DH +HN =
NE = NF + EF . Therefore EF −DH = NH/2 = HF/3.
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10. (8–9) (M.Evdokimov) An acute-angled triangle with one side equal to the altitude from
the opposite vertex is cut from paper. Construct a point inside this triangle such that
the square of the distance from it to one of the vertices equals the sum of the squares
of distances to to the remaining two vertices. No instruments are available, it is allowed
only to fold the paper and to mark the common points of folding lines.
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Solution. Let the altitude CH of triangle ABC be equal to he side AB, AC > BC. Then
for any point X lying on the altitude from A we have XC2−XB2 = AC2−AB2 = AH2.
Therefore it is sufficient to construct the point on this altitude such that AX = AH.

Fold the triangle along the lines passing through A and C, perpendicular to BC and
AB respectively, mark the point H. Now fold in such a way that AB coincides with the
altitude from A and mark the point X coinciding with H (fig. 10).
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Fig. 10.

11. (8–10) (F.Nilov) A point X is the origin of three rays such that the angle between any two
of them equals 120◦. Let w be an arbitrary circle with radius R such that X lies inside it,
and A, B, C be the common points of the rays with this circle. Find max(XA+XB+XC).

Solution. The assumption yields that X is the Torricelli point of triangle ABC. Therefore
XA+XB+XC ≤ OA+OB+OC = 3R, where O is the center of the circle. The equality
is obtained when O coincides with X.

12. (8–10) (L.Shatunov) Circles ω1 and ω2 are given. Let M be the midpoint of the segment
joining their centers, X, Y be arbitrary points on ω1, ω2 respectively such that MX =
MY . Find the locus of the midpoints of segments XY .

Answer. One or two segments perpendicular to the line joining the centers of the circles.

Solution. Let O1, O2 be the centers of the given circles, r1, r2 be their radii, and O1O2 =
2d. Constructing the altitude XH of triangle XMO1 we obtain that MH2 − O1H

2 =
(MH+HO1)(MH−HO1) = XM2−r21. Since one of multipliers equals d, the second one
equals (XM2− r21)/d and MH = (XM2+ d2− r21)/2d. Similarly the distance between M
and the projection of Y to O1O2 equals (XM2 + d2 − r22)/2d, therefore the projection of
the midpoint of XY to O1O2 do not depend on XM . If ω1 and ω2 do not intersect, the
required locus contains two segments symmetric with respect to O1O2, their endpoints
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correspond to the maximal and the minimal values of XM (fig. 12). In the opposite case
we obtain one segment.

MO1 O2

Fig. 12.

13. (8–11) (B.Frenkin) Each two opposite sides of a convex 2n-gon are parallel. (Two sides
are opposite if one passes n − 1 other sides moving from one side to another along the
borderline of the 2n-gon.) The pair of opposite sides is called regular if there exists a
common perpendicular to them such that its endpoints lie on the sides and not on their
extensions. Which is the minimal possible number of regular pairs?

Answer. 1.

Example. Take the parallelogram ABCD such that the projection of segment BC to the
line AD do not intersect the segment AD. Choose the points B1, B2 on the sides AB, BC
and the points D1, D2 on the sides CD, AD in such a way that B1B2 ∥ D1D2 and the
projections of segments B1B2, D1D2 to a parallel line do not intersect (fig. 13). Similarly
choose the points on the segments B1B2, B2C, D1D2, D2A etc. We obtain a 2n-gon with
unique regular pair AB1, CD1.
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Fig. 13.
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Estimate. Let A2nA1, AnAn+1 be the pair of sidelines with minimal distance between
them. Suppose that the projections of these sides to a parallel line do not intersect. Then
we can suppose that ∠A2n−1A2nA1 > π/2. Extend the side A2n−1A2n, An−1An until their
meeting points B, C with the lines AnAn+1, A2nA1 respectively. The perpendicular from
A2n to AnB meets the side AnC of parallelogram A2nCAnB, Therefore the distance from
A2n to AnB is grater than the distance to AnC, which contradicts to the definition of the
pair A2nA1, AnAn+1.

14. (9–11) (L.Shatunov) A point D lies inside a triangle ABC on the bisector of angle B. Let
ω1 and ω2 be the circles touching AD and CD at D and passing through B; P and Q be
the common points of ω1 and ω2 with the circumcircle of ABC distinct from B. Prove
that the circumcircles of the triangles PQD and ACD are tangent.

Solution. Take an inversion centered at D with radius DB, let A′, C ′ P ′, Q′ be the images
of A, C, P , Q respectively. Then ∠DC ′B = ∠CBD = ∠ABD = ∠DA′B. Also ω1 and
ω2 are transformed to the lines passing through B and parallel to A′D, C ′D respectively.
Therefore ∠P ′BA′ = ∠Q′BC ′ and A′P ′Q′C ′ is an isosceles trapezoid (fig. 14). Now the
inversion maps the parallel lines P ′Q′ and A′C ′ to the circles touching at D.
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Fig. 14.

15. (9–11) (A.Zaslavsky) A point C lies on the bisector of an acute angle with vertex S. Let
P , Q be the projections of C to the sidelines of the angle. The circle centered at C with
radius PQ meets the sidelines at points A and B such that SA ̸= SB. Prove that the
circle with center A touching SB and the circle with center B touching SA are tangent.

Solution. Since SC is the bisector of angle ASB, AC = BC, and SA ̸= SB, we obtain
that S, A, B, C are concyclic. Hence ∠CAB = ∠CSB = ∠CPQ, i.e. the triangles CPQ
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and CAB are similar. Therefore AB : PQ = PQ : PC = 2 cos∠CSP . Also AP = BQ,
thus SA + SB = 2SP and the sum of distances from A and B to the opposite sides
of the angle equals 2SP sin∠ASB = 2PC cos2 ∠ASC = AB, which is equivalent to the
required assertion (fig. 15).
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16. (9–11) (A.Zaslavsky) The Feuerbach point of a scalene triangle lies on one of its bisectors.
Prove that it bisects the segment between the corresponding vertex and the incenter.

First solution. Let the Feuerbach point F of triangle ABC lie on the bisector of
angle C. Then the center E of the nine-points circle bisecting the segment between
the orthocenter H and the circumcenter O also lies on this bisector. Thus CE bisects
the angle OCH, Therefore O and H are symmetric with respect to the bisector, and
CO = CH = 2CO| cos∠C|, i.e. the angle C equals to π/3 or 2π/3. But in the second case
O and H are symmetric with respect to external bisector of angle C. Hence ∠C = π/3,
and CF = r = CI sin(∠C/2) = CI/2.

Second solution. It is known that F if the center of the equilateral hyperbola passing
through A, B, C, I. If the line CI passes through the center of this hyperbola, C and I
are symmetric with respect to F .

17. (9–11) (P.Puchkov, E.Utkin) Let O, I be the circumcenter and the incenter of an acute-
angled scalene triangle ABC; D, E, F be the touching points of its excircle with the
side BC and the extensions of AC, AB respectively. Prove that if the orthocenter of the
triangle DEF lies on the circumcircle of ABC, then it is symmetric to the midpoint of
the arc BC with respect to OI.

Solution. Let D′, E ′, F ′ be the second common points of the altitudes of triangle
DEF with its circumcircle. Then the altitudes are the bisectors of triangle D′E ′F ′ (one
internal and two external), therefore they are parallel to the corresponding bisectors of
triangle ABC. Hence the sidelines of these triangles are also parallel, i.e. the triangles are
homothetic. This homothety maps O and the excenter IA to IA and the orthocenter H
of triangle DEF respectively, therefore H lies on the line IAO, and IAH : OIA = rA : R.
From this and the equalities OIA = R2 +2RrA, OH = R we obtain that OIA = 2R. Also
it is known that the midpoint W of the arc BC bisects the segment IIA. Since the medial
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line WM of triangle OIIA is perppendicular to HW , we obtain that OI ⊥ HW (fig. 17),
which yields the required assertion.
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18. (9–11) (I.Kukharchuk) Let ABCD be a quadrilateral such that the excircles ω1 and ω2

of triangles ABC and BCD touching their sides AB and BD respectively touch the
extension of BC at the same point P . The segment AD meets ω2 at point Q, and the line
AD meets ω1 at R and S. Prove that one of angles RPQ and SPQ is right.

Solution. We have to prove that AD passes through the center of internal homothety
mapping ω1 to ω2. Let ω1 touch BA and AC at E and G respectively. Let ω2 touch BD
and CD at F and L respectively.

Applying the Menelaos theorem to the triangles ABD< ACD and the lines EF , GL
respectively we obtain that EF and GL meet on AD, on the other hand EF passes
through the homothety center, because EF meets ω1 in the point such the tangent at it
is parallel to BD. Similarly GL passes through this homothety center (fig. 18).
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19. (10–11) (S.Kuznetsov) Let I be the incenter of a triangle ABC; A′, B′, C ′ be the
orthocenters of the triangles BIC, AIC, AIB; Ma, Mb, Mc be the midpoints of BC,
CA, AB, and Sa, Sb, Sc be the midpoints of AA′, BB′, CC ′. Prove that MaSa, MbSb,
McSc concur.

Solution. The reflection of C ′ about Mc is opposite to I on the circle IAB, i.e. coincide
with the excenter IC of triangle ABC. Hence the medial line ScMc of triangle C ′IIC
is parallel to CI and passes through the incenter of triangle MaMbMc (fig. 19). Two
remaining lines also pass through this point.
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20. (10–11) (F.Ivlev) Let H be the orthocenter of a triangle ABC, and M , N be the midpoints
of segments BC, AH respectively. The perpendicular from N to MH meets BC at point
A′. Points B′ and C ′ are defined similarly. Prove that A′, B′, C ′ are collinear.

Solution. Since MN is a diameter of the nine-points circle, the projection of N to MH
lies on this circle (fig. 20). Hence A′ on the polar of H with respect to the nine-points
circle. The points B′, C ′ also lie on this line.
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Fig. 20.

21. (10–11) (G.Galyapin) Let P be a point inside a quadrilateral ABCD such that ∠APB+
∠CPD = 180◦. Points Pa, Pb, Pc, Pd are isogonally conjugated to P with respect to
the triangles BCD, CDA, DAB, ABC respectively. Prove that the diagonals of the
quadrilaterals ABCD and PaPbPcPd concur.

Solution. Since ∠APB + ∠CPD = 180◦, there exists a point Q isogonally conjugated
to P with respect to ABCD. Then Pc, Pa lie on AQ, CQ respectively in such a way
that ∠PcBQ = ∠DBC, ∠PaBQ = ∠DBA (fig. 21). Hence APc : PcQ = AB sin∠ABPc :
BQ sin∠PcBQ, QPa : PaC = BQ sin∠QBPa : BC sin∠PaBC, and by the Menelaos
theorem PaPc divides AC in ratio PA sin∠ABD : PC sin∠DBC. Therefore this line
passes through the common point L of AC and BD (fig. 21). Similarly PbPd passes
through L.

15



A

B

C

Q

Pa

Pc

L

Fig. 21.

22. (10–11) (A.Zaslavsky) A circle and an ellipse with foci F1, F2 lying inside it are given.
Construct a chord AB of the circle touching the ellipse and such that AF1F2B is a cyclic
quadrilateral.

First solution.

Lemma. Let AB be an arbitrary chord touching the ellipse. Then the locus of circumcenters
of triangles ABF1 is a circle.

Proof. Let O, R be the center and the radius of the given circle; O′ be the circumcenter
of triangle ABF1; H be the projection of F1 to AB (fig. 22). It is clear that OO′ ∥ F1H.
Applying the cosines law to the triangles O′OA and O′OF1 we obtain

O′F 2
1 = O′O2+OF 2

1−2OO′·OF1 cos∠O′OF1, O′A2 = O′O2+R2−2O′O·OA cos∠O′OA.

Substracting from the first equality the second one we obtain

R2 −OF 2
1 = 2O′O(OA cos∠O′OA−OF1 cos∠O′OF1).

We have in the parenthesis the difference of projections of segments OA and OF1 to OO′,
which equals F1H. Thus the product OO′ · F1H does not depend on AB.
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Let E be the pole of AB with respect to some circle centered at F1. Then F1E ∥ OO′

and the ratio OO′ : F1E does not depend on AB because the products F1H · OO′ and
F1H · F1E do not depend on AB. Thus O′E meets OF1 at the fixed point X. Hence the
locus of O′ is homothetic with respect to X to the polar map of ellipse with respect to
F1 which is a circle.

Return to the problem. Since the tangents to the ellipse can be constructed by a compass
and a ruler, we can construct the loci of circumcenters of triangles ABF1 and ABF2.
Their common point is the center of the required circle.

Second solution. Let D and E be the common points of the given circle ω and the line
F1F2. Let S be a point on F1F2 such that SD · SE = SF1 · SF2. To construct this point
take any circle passing through F1 and F2 and intersecting ω. The point S is the common
point of the radical axis of two circles with F1F2. Let Ω be the circle having the great axis
of the ellipse as a diameter, S ′ be the reflection of S about Ω, C be a point on the ellipse
such that CS ′ ⊥ F1F2, A and B be the common points of ω and CS. Then CS touches
the ellipse, and the quadrilateral AF1F2B is cyclic.

23. (10–11) (N.Spivak) Let us say that a subset M of the plane contains a hole if there exists
a disc not contained in M , but contained inside some polygon with the boundary lying
in M .

Can the plane be presented as a union of n convex sets such that the union of any n− 1
from them contains a hole?

Answer. Yes.

Solution. Let n = 6; the set M0 be a regular pentagon A1A2A3A4A5, and the sets Mi, i =
1, . . . , 5 be the semiplanes bounded by the lines AiAi+1 (Ai+5 = Ai), not containing the
pentagon. Then the union of Mi is the whole plane, the union of Mi, . . . ,M5 is the plane
without the pentagon M0, and the union of five sets excepting Mi is the plane without
the triangle formed by the lines Ai−1Ai, AiAi+1, and Ai+1Ai+2.
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Remark. Jury does know the examples for n < 6.

24. (11) (S.Arutyunyan) The insphere of a tetrahedron ABCD touches the faces ABC, BCD,
CDA, DAB at D′, A′, B′, C ′ respectively. Denote by SAB the square of the triangle
AC ′B. Define similarly SAC , SBC , SAD, SBD, SCD. Prove that there exists a triangle with
sidelengths

√
SABSCD,

√
SACSBD,

√
SADSBC .

Solution Use the known equality ∠AC ′B = ∠AD′B = ∠CA′D = ∠CB′D and three
similar to it. Denote by a, b, c, d and α, β, γ the lengths of the tangents to the insphere
from A, B, C, D, and the angles BD′C, CD′A, AD′B respectively. Then

SABSCD =
abcd sin2 γ

4
.

Since the angles α, β, γ are less than π, we have to prove the existence of a triangle with
sidelines sinα, sin β, sin γ which clearly follows from the equality α + β + γ = 2π. For
example we can take a triangle formed by the lines perpendicular to D′A, D′B, D′C.
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