VIII Geometrical Olympiad in honour of I.F.Sharygin Final round. Second day. 8 form.

Ratmino, 2012, August 1
5. Do there exist a convex quadrilateral and a point P inside it such that the sum of distances from P to the vertices of the quadrilateral is greater than its perimeter?
6. Let ω be the circumcircle of triangle $A B C$. A point B_{1} is chosen on the prolongation of side $A B$ beyond point B so that $A B_{1}=A C$. The angle bisector of $\angle B A C$ meets ω again at point W. Prove that the orthocenter of triangle $A W B_{1}$ lies on ω.
7. The altitudes $A A_{1}$ and $C C_{1}$ of an acute-angled triangle $A B C$ meet at point H. Point Q is the reflection of the midpoint of $A C$ in line $A A_{1}$; point P is the midpoint of segment $A_{1} C_{1}$. Prove that $\angle Q P H=90^{\circ}$.
8. A square is divided into several (greater than one) convex polygons with mutually different numbers of sides. Prove that one of these polygons is a triangle.

VIII Geometrical Olympiad in honour of I.F.Sharygin Final round. Second day. 9 form.

Ratmino, 2012, August 1
5. Let $A B C$ be an isosceles right-angled triangle. Point D is chosen on the prolongation of the hypothenuse $A B$ beyond point A so that $A B=2 A D$. Points M and N on side $A C$ satisfy the relation $A M=N C$. Point K is chosen on the prolongation of $C B$ beyond point B so that $C N=B K$. Determine the angle between lines $N K$ and $D M$.
6. Let $A B C$ be an isosceles triangle with $B C=a$ and $A B=A C=b$. Segment $A C$ is the base of an isosceles triangle $A D C$ with $A D=D C=a$ such that points D and B share the opposite sides of $A C$. Let $C M$ and $C N$ be the bisectors in triangles $A B C$ and $A D C$ respectively. Determine the circumradius of triangle $C M N$.
7. A convex pentagon P is divided by all its diagonals into ten triangles and one smaller pentagon P^{\prime}. Let N be the sum of areas of five triangles adjacent to the sides of P decreased by the area of P^{\prime}. The same operations are performed with the pentagon P^{\prime}; let N^{\prime} be the similar difference calculated for this pentagon. Prove that $N>N^{\prime}$.
8. Let $A H$ be an altitude of an acute-angled triangle $A B C$. Points K and L are the projections of H onto sides $A B$ and $A C$. The circumcircle of $A B C$ meets line $K L$ at points P and Q, and meets line $A H$ at points A and T. Prove that H is the incenter of triangle $P Q T$.

VIII Geometrical Olympiad in honour of I.F.Sharygin Final round. Second day. 10 form.

Ratmino, 2012, August 1
5. A quadrilateral $A B C D$ with perpendicular diagonals is inscribed into a circle ω. Two $\operatorname{arcs} \alpha$ and β with diameters $A B$ and $C D$ lie outside ω. Consider two crescents formed by the circle ω and the arcs α and β (see Figure). Prove that the maximal radii of the circles inscribed into these crescents are equal.

6. Consider a tetrahedron $A B C D$. A point X is chosen outside the tetrahedron so that segment $X D$ intersects face $A B C$ in its interior point. Let A^{\prime}, B^{\prime}, and C^{\prime} be the projections of D onto the planes $X B C, X C A$, and $X A B$ respectively. Prove that $A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+C^{\prime} A^{\prime} \leq D A+D B+D C$.
7. Consider a triangle $A B C$. The tangent line to its circumcircle at point C meets line $A B$ at point D. The tangent lines to the circumcircle of triangle $A C D$ at points A and C meet at point K. Prove that line $D K$ bisects segment $B C$.
8. A point M lies on the side $B C$ of square $A B C D$. Let X, Y, and Z be the incenters of triangles $A B M, C M D$, and $A M D$ respectively. Let H_{x}, H_{y}, and H_{z} be the orthocenters of triangles $A X B, C Y D$, and $A Z D$. Prove that H_{x}, H_{y}, and H_{z} are collinear.

