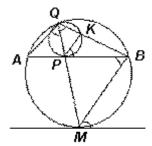
11 класс 2011/12 уч. год

Окружности, вписанные в сегмент. Полувписанная окружность

Сегодняшний кружок состоит из двух частей, которые, казалось бы, мало связаны. Это не так, но убедиться в этом мы сумеем не сразу, скорее всего, на следующем занятии.



1. Вспомним одну знакомую вам геометрическую конфигурацию. В окружности ω радиуса R проведена хорда AB и в сегмент, отсеченный этой хордой, вписана вторая окружность ω_1 радиуса r, касающаяся AB в точке P, а дуги окружности ω — в точке Q. Тогда луч QP является биссектрисой угла AQB (см. рис. 1).

Как это доказать?

<u>Доказательство</u>. Пусть луч *QP* пересекает ω в точке M. Рассмотрим гомотетию с центром Q и коэффициентом $k=\frac{R}{r}$. При этой гомотетии образом ω_1 является ω , образом <u>Puc. 1</u> точки Q — точка M. Далее можно рассуждать по-разному.

<u>Первый способ</u>. Образом касательной *AB* к окружности ω_1 является касательная к ω , проходящая через точку *M*. Угол между этой касательной и хордой *BM* равен вписанному углу *BQM* и равен углу *ABM* (из параллельности касательной и (*AB*)). Так как $\angle ABM = \angle AQM$, то $\angle BQM = \angle AQM$, что и требовалось.

<u>Второй способ</u>. Рассмотрим точку K – прообраз точки B при указанной гомотетии, тогда образом (PK) является (BM), значит, $(PK) \mid\mid (BM)$, следовательно, $\angle KPB = \angle PBM$. Кроме того, $\angle BQP = \angle KPB$ и $\angle ABM = \angle AQM$. Таким образом, $\angle BQP = \angle AQP$, что и требовалось.

Доказанное утверждение называется леммой о сегменте (или **леммой Архимеда**). Из доказанного сразу следует, что **М – середина дуги АВ**.

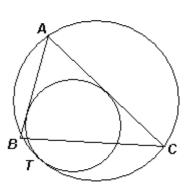
2. На одном из кружков в 10 классе при выводе формулы Карно «тригонометрическим» способом мы получили формулу, связывающую радиусы вписанной и описанной окружностей треугольника: $\mathbf{r} = \mathbf{4Rsin} \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$ (α , β и γ – углы этого треугольника).

Напомню, что при выводе этой формулы использовались формулы площади треугольника $S=pr=rac{abc}{4R}$, стороны выражались через R по следствию из теоремы

синусов, а также использовалось равенство $\sin\alpha + \sin\beta + \sin\gamma = 4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}$, которое доказывается чистой тригонометрией при условии, что $\alpha + \beta + \gamma = \pi$.

Сегодня мы используем эту формулу для знакомства с новой геометрической конфигурацией. Пусть в окружность ω вписан треугольник ABC. Рассмотрим окружность ω_1 , касающуюся сторон AB и AC и окружности ω в точке T (см. рис. 2a). Такую окружность будем называть полувписанной для треугольника ABC.

Вопросы. 1) Верно ли, что такая окружность существует для любого вписанного треугольника ABC? [Да. Пусть точка Z движется по биссектрисе угла А, тогда она равноудалена от АВ и АС и найдется такое ее положение (из соображений непрерывности), при котором это расстояние будет равно расстоянию от Z до ω



2) Сколько полувписанных окружностей у любого треугольника? [Три] <u>Задача</u>. Вычислите радиус r_1 полувписанной окружности треугольника *ABC*, касающейся сторон AB и AC, если даны радиус r вписанной окружности и $\angle BAC = \alpha$. Рис. 2а

<u>Решение</u>. Пусть O и I_1 – центры описанной и полувписанной окружностей соответственно (см. рис. 2б). Вычислим стороны

треугольника AOI_1 : |OA| = R, $|OI_1| = R - r_1$, $|AI_1| = \frac{r_1}{\sin \frac{\alpha}{2}}$. Кроме

того, $\angle OAI_1 = \frac{|\beta - \gamma|}{2}$ (прямой счет углов или изогональное сопряжение АО и АН).

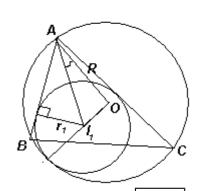


Рис. 2б

$$(R - r_1)^2 = R^2 + \frac{r_1^2}{\sin^2 \frac{\alpha}{2}} - \frac{2Rr_1}{\sin \frac{\alpha}{2}} \cdot \cos \frac{\beta - \gamma}{2} \iff$$

$$r_1^2 - 2Rr_1 = \frac{r_1^2}{\sin^2 \frac{\alpha}{2}} - \frac{2Rr_1}{\sin \frac{\alpha}{2}} \cdot \cos \frac{\beta - \gamma}{2} \qquad \Leftrightarrow \qquad r_1 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_2 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_3 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_4 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \left(\cos \frac{\beta - \gamma}{2} - \sin \frac{\alpha}{2}\right) \qquad \Leftrightarrow \qquad r_5 \left(1 - \sin^2 \frac{\alpha}{2}\right) = 2R \sin^2 \frac{\alpha}{2} \cos^2 \frac{\alpha}{2} \cos$$

$$r_{1}^{2}-2Rr_{1}=\frac{r_{1}^{2}}{\sin^{2}\frac{\alpha}{2}}-\frac{2Rr_{1}}{\sin\frac{\alpha}{2}}\cdot\cos\frac{\beta-\gamma}{2}\iff r_{1}\left(1-\sin^{2}\frac{\alpha}{2}\right)=2R\sin\frac{\alpha}{2}\left(\cos\frac{\beta-\gamma}{2}-\sin\frac{\alpha}{2}\right)\iff r_{1}=\frac{2R\sin\frac{\alpha}{2}\left(\cos\frac{\beta-\gamma}{2}-\sin\frac{\alpha}{2}\right)}{\cos^{2}\frac{\alpha}{2}}.$$
 Tak kak $\cos\frac{\beta-\gamma}{2}-\sin\frac{\alpha}{2}=\cos\frac{\beta-\gamma}{2}-\cos\frac{\beta+\gamma}{2}=2\sin\frac{\beta}{2}\sin\frac{\gamma}{2},$

TO
$$r_1 = \frac{4R\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}}{\cos^2\frac{\alpha}{2}} = \frac{r}{\cos^2\frac{\alpha}{2}}$$
.

Задачи для самостоятельного решения

- **1.** В окружности ω проведена хорда AB, M середина одной из дуг AB.
- а) Найдите радиус наибольшей окружности, вписанной в сегмент, отсекаемый хордой АВ (не содержащий точки M), если радиус окружности ω равен R, |MA| = a.
- б) Докажите, что длина касательной, проведенной из точки M, к любой окружности, вписанной в этот же сегмент, равна |MA|.
- в) Докажите, что если в этот же сегмент вписать две окружности, пересекающиеся в точках C и D, то (CD) содержит точку M.
- **2.** Из точки D окружности ω опущен перпендикуляр DC на диаметр AB. Окружность ω_1 касается отрезка CA в точке E, а также отрезка CD и окружности ω . Докажите, что [DE] – биссектриса треугольника ADC.
- 3. Треугольник ABC вписан в окружность ω . Окружность ω_1 касается сторон AC и BC в точках *М* и *N* и дуги *AB*, *I* – середина отрезка *MN*. Докажите, что:

а)
$$|AI| = \frac{r}{\sin \frac{\alpha}{2}}$$
 , где $\angle BAC = \alpha$, r – радиус окружности, вписанной в треугольник ABC ;

- б) точка І центр окружности, вписанной в треугольник АВС;
- в) (MN) касательная к окружности, описанной около треугольника BIC.
- **4.** Треугольник *ABC* вписан в окружность ω . Окружность ω_1 касается сторон *AC* и *BC* в точках *M* и *N* соответственно и дуги *AB* в точке *T*. Лучи *TM* и *TN* пересекают окружность ω в точках *C*' и *B*' соответственно. Докажите, что:
- a) (B'C') || (MN);
- б) (*B*'*C*') делит отрезки *AM* и *AN* пополам.