ЕЩЕ РАЗ О ТРИСЕКЦИИ УГЛА

Е. Д. Куланин, г. Москва

Знатоку классической геометрии и замечательному Учителю учителей Григорию Петровичу Бевзу

Задачи о квадратуре круга и трисекции угла являются знаменитыми задачами древности.

Известно, что невозможно точно решить эти задачи с помощью только циркуля и линейки без делений. Такие ограничения были общепринятыми в Древней Греции, вероятно, потому, что при помощи этих инструментов можно проводить прямые и окружности — самые совершенные линии с точки зрения древних.

В греческой мифологии изобретение циркуля приписывают Талосу, племяннику легендарного Дедала, известного полетом к Солнцу на искусственных крыльях вместе со своим сыном Икаром. Древнеримский поэт Овидий (43 до н. э. — ок. 18 н. э.) так описывает это изобретение в поэме «Метаморфозы»:

Первый единым узлом связал он две ножки железных,

Чтобы, когда друг от друга они в расстоянии равном,

Твердо стояла одна, другая же круг обводила.

В статье «Трисекция угла простыми способами» были рассмотрены некоторые методы трисекции угла с помощью всевозможных приспособлений и приборов. Однако такие способы имели влиятельных противников уже в древности. Так, знаменитый философ Платон считал, что те, кто использует в геометрии механические методы, «губят достоинство геометрии, которая от бестелесного и умодостигаемого опускается до чувственного и вновь сопрягается с телами, требующими для своего изготовления длительного и тяжелого труда ремесленника».

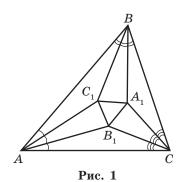
Очевидно, что эта точка зрения тяготела даже над великим механиком и математиком Архимедом, который, хотя и прославился своими механическими изобретениями, тем не менее не написал ни одного сочинения по инженерной механике. В то же время уже в древности были известны способы точного деления угла на три равные части, в которых роль «прибора» или дополнительного «инструмен-

та» играли различные кривые — в частности конхоида Никомеда и квадратиса Динострата. Но эти прямые довольно таки экзотические, по крайней мере, их не изучают в школе.

В нашей статье мы покажем, что трисекцию угла можно выполнить, используя менее замысловатую кривую, а именно — обыкновенную «школьную» гиперболу $y = \frac{1}{x}$. Для обоснования этого способа трисекции нам понадобятся некоторые геометрические объекты, в частности треугольники Морлея.

ТЕОРЕМА МОРЛЕЯ

Напомним, что лучи, делящие произвольный угол на три равные части, называют трисектрисами этого угла, а трисектрисы внутренних углов треугольника, прилегающие к одной из его сторон, — смежными трисектрисами этого треугольника. По теореме Морлея точки пересечения смежных трисектрис произвольного треугольника ABC являются вершинами равностороннего треугольника $A_1B_1C_1$ (puc. 1).



Треугольник $A_1B_1C_1$ в дальнейшем мы будем называть треугольником Морлея треугольника ABC.

Эта теорема названа в честь американского математика Ф. Морлея, открывшего ее в 1904 году (по другим данным — в 1899 году). Доказательство теоремы Морлея можно найти

в книгах [1] и [2]. Нас будут интересовать лишь величины некоторых углов. Пусть A, B и C — величины углов CAB, ABC, BCA треугольника ABC соответственно (для определенности будем считать, что A < B < C). Тогда

$$\angle A_1 C_1 B = 60^\circ + \frac{A}{3}, \ \angle C_1 A_1 B = 60^\circ + \frac{C}{3}.$$

Продолжим прямую C_1A_1 до пересечения с прямыми BC и AC в точках K и N соответственно ($puc.\ 2$).

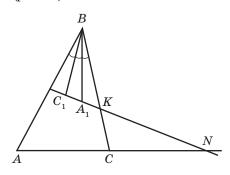


Рис. 2

Так как углы C_1A_1B и ACB — внешние углы треугольников BA_1K и KCN, то

$$\angle C_1 A_1 B = \angle A_1 BK + \angle A_1 KB = \frac{B}{3} + \angle A_1 KB$$

И

$$\angle ACB = \angle CKN + \angle CNK$$
,

но
$$\angle C_1 A_1 B = 60^\circ + \frac{C}{3}$$
, $\angle ACB = C$, откуда

$$\angle CKN = \angle A_1KB = 60^\circ + \frac{C-B}{3}$$

И

$$\angle CNK = \angle ACB - \angle CKN =$$

$$= C - 60^{\circ} - \frac{C - B}{3} = \frac{B + 2C}{3} - 60^{\circ}.$$

Поскольку $A + B + C = 180^{\circ}$, то

$$\frac{A+B+C}{3}=60^{\circ},$$

и тогда
$$\angle CNK = \frac{B+2C}{3} - \frac{A+B+C}{3} = \frac{C-A}{3}$$
.

Таким образом, угол наклона стороны A_1C_1 треугольника Морлея $A_1B_1C_1$ к стороне AC треугольника ABC равен $\frac{C-A}{3}$. Аналогично

углы наклона остальных сторон треугольника $A_1B_1C_1$ к соответствующим сторонам треугольника ABC равны $\frac{B-A}{3}$ и $\frac{C-B}{3}$. Очевидно, что если треугольник ABC — равнобедренный (AB=BC), то A=C и $A_1C_1 \parallel AC$ (это легко получить из того, что высота BD — ось симметрии треугольника ABC).

НЕКОТОРЫЕ ПОДГОТОВИТЕЛЬНЫЕ СВЕДЕНИЯ

Пусть ABC — остроугольный треугольник, точка O — центр, BK — диаметр описанной окружности, BD — высота треугольника ABC (puc. 3).

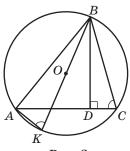


Рис. 3

Тогда $\angle KAB = 90^{\circ}$ — вписанный, опирается на диаметр, $\angle AKB = \angle ACB = C$ — вписанные, опираются на одну и ту же дугу AB. Отсюда следует, что

$$\angle ABK = 90^{\circ} - \angle AKB = 90^{\circ} - C = \angle DBC,$$

a
 $\angle OBD = \angle ABC - \angle ABK - \angle DBC = B - 2(90^{\circ} - C) =$
 $= B + 2C - 180^{\circ} = B + 2C - A - B - C = C - A.$

Итак, угол между высотой, проведенной из некоторой вершины остроугольного треугольника, и радиусом описанной окружности вокруг этого треугольника, проведенным через ту же вершину, равен разности двух углов этого треугольника, прилежащих к противоположной стороне этой вершины. Для тупоугольного и прямоугольного треугольников доказательства аналогичны.

Проведем $BE \perp C_1A_1$ и $BD \perp AC$ (puc. 4).

Тогда $\angle DBE = \angle C_1 NA$ как углы с соответственно перпендикулярными сторонами, но $\angle C_1 NA = \frac{C-A}{3}$, поэтому и $\angle DBE = \frac{C-A}{3}$.

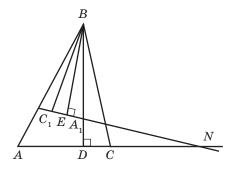


Рис. 4

Назовем прямые, содержащие высоты треугольника $A_1B_1C_1$, морлеевскими осями треугольника ABC. Учитывая, что $\angle OBD = C - A$, получим, что прямая, проходящая через вершину B треугольника ABC и параллельная морлеевской оси, содержащей точку B_1 , является трисектрисой угла CBD, прилежащей к высоте BD. Аналогичные утверждения справедливы и для двух оставшихся морлеевских осей. Если обозначить высоты треугольника ABC через AH_1 , BH_2 , CH_3 , то можно утверждать, что трисектрисы углов OAH_1 , OBH_2 , OCH_3 , прилежащие соответственно к высотам AH_1 , BH_2 и CH_3 , параллельны соответствующим морлеевским осям треугольника ABC.

Поскольку в прямоугольном треугольнике центр описанной окружности лежит на гипотенузе, а катеты являются высотами, то трисектрисы его острых углов, прилежащие к катетам, задают направления соответствующих осей (рис. 5).

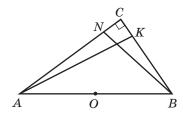
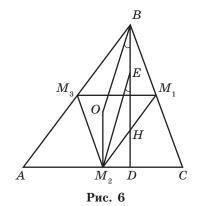


Рис. 5

Отметим еще один факт. Пусть точки M_1 , M_2 и M_3 — середины сторон BC, CA и AB соответственно треугольника ABC, H — точка пересечения его высот, точка E — середина BH (puc. 6).



Тогда центр O описанной окружности треугольника ABC совпадает с точкой пересечения высот треугольника $M_1M_2M_3$, а так как треугольник ABC подобен треугольнику $M_1M_2M_3$ с коэффициентом подобия 2, то $BH=2M_2O$, откуда

$$BE = \frac{1}{2}BH = OM_2$$
.

Итак, отрезки OM_2 и BE параллельны и равны, поэтому четырехугольник M_2OBE — параллелограмм, откуда

$$OB \parallel M_2 E$$
 и $\angle M_2 ED = \angle OBD = C - A$.

РАВНОСТОРОННЯЯ ГИПЕРБОЛА

Гиперболу можно определить различными способами: и как геометрическое место точек, расстояния от которых до двух неподвижных точек имеют постоянную разность, и как коническое сечение, то есть сечение поверхности двухполостного прямого кругового конуса плоскостью, параллельной оси этого конуса и не проходящей через его вершину. По гиперболам движутся кометы, которые попадают в нашу Солнечную систему из космического пространства, а затем покидают её (существуют кометы, например, комета Галлея, траектории которых — сильно вытянутые эллипсы, а также кометы с параболическими орбитами). В поэтической форме движение комет удачно описал М. Волошин:

…Вселенских бурь блуждающие светы, — Мы вдаль несём… Пусть тёмные планеты В нас видят меч грозящих миру кар, — Мы правим путь свой к солнцу, как Икар,

Плащом ветров и пламени одеты. Но странные, — его коснувшись, — прочь Стремим свой бег: от солнца снова в ночь...

Ветви гиперболы бесконечно приближаются к двум пересекающимся прямым, называемым асимптотами, но никогда не достигают их. Испанский философ Мигель де Унамуно сравнил гиперболу с трагическим существом: «Я уверен, что если бы геометр сознавал безнадежное и отчаянное стремление гиперболы соединиться со своими асимптотами, то он охарактеризовал бы гиперболу как живое и трагическое существо!»

Гипербола обладает ещё многими любопытными свойствами. Заинтересованному читателю мы настоятельно рекомендуем ознакомиться с увлекательным очерком «Гиперболы» в не менее увлекательной книге «От мозаик Пенроуза к надежным шифрам» (М. Мир, 1993) известного американского популяризатора математической науки М. Гарднера.

Гиперболу называют равносторонней, если ее асимптоты взаимно перпендикулярны. В частности равносторонними являются все гиперболы вида $y=\frac{k}{x}$ (в данном случае асимптотами являются оси координат). В дальнейшем для определенности будем рассматривать гиперболу $y=\frac{1}{x}$, хотя все свойства, вывод которых приводится ниже, верны для любой равносторонней гиперболы (некоторые даже для произвольной кривой второго порядка). Отрезок, соединяющий две точки гиперболы, называют ее хордой.

Свойство 1. Середины всех параллельных хорд гиперболы лежат на одной прямой, которая проходит через начало координат.

Для определенности рассмотрим случай, когда хорда соединяет точки

$$A\left(x_1; \frac{1}{x_1}\right)$$
 и $B\left(x_2; \frac{1}{x_2}\right)$

гиперболы $y=\frac{1}{x}$, принадлежащие одной и той же ее ветви. Тогда середина M хорды AB имеет координаты

$$\left(\frac{x_1+x_2}{2}; \frac{\frac{1}{x_1}+\frac{1}{x_2}}{2}\right) = \left(\frac{x_1+x_2}{2}; \frac{x_1+x_2}{2x_1x_2}\right),$$

TO ECTE $\frac{y}{x} = \frac{1}{x_1 x_2}$.

 ${\bf C}$ другой стороны, поскольку все хорды ${\bf AB}$ параллельны, то отношение

$$\left(\frac{1}{x_2} - \frac{1}{x_1}\right) : (x_1 - x_2) = \frac{1}{x_1 x_2} = k$$

постоянно и равно угловому коэффициенту прямых, содержащих данные параллельные отрезки. Поэтому середины хорд AB лежат на прямой y = kx, где

$$k=\frac{1}{x_1x_2}.$$

В остальных случаях доказательство аналогично.

Свойство 2. Если вершины треугольника ABC лежат на гиперболе $y = \frac{1}{x}$, то и точка пересечения H высот этого треугольника также

лежит на этой гиперболе. Обозначим координаты вершин треугольника:

$$A\left(x_{1}; \frac{1}{x_{1}}\right), B\left(x_{2}; \frac{1}{x_{2}}\right), C\left(x_{3}; \frac{1}{x_{3}}\right).$$

Пусть y = kx + b — уравнение высоты CC_1 . Найдем коэффициенты k и b:

$$k_{AB} = \frac{\left(\frac{1}{x_1} - \frac{1}{x_2}\right)}{x_1 - x_2} = -\frac{1}{x_1 x_2},$$

где k_{AB} — угловой коэффициент прямой, проходящей через точки A и B. Так как $CC_1 \perp AB$, то $k_{AB} \cdot k = -1$, откуда $k = x_1 x_2$. Поскольку точка C лежит на прямой CC_1 , то ее координаты удовлетворяют уравнению этой прямой:

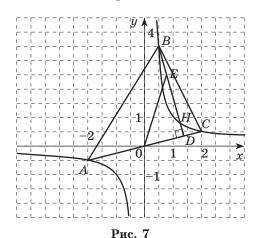
$$\frac{1}{x_2} = x_1 x_2 x_3 + b,$$

тогда
$$b = \frac{1}{x_3} - x_1 x_2 x_3$$
.

Таким образом, $y=x_1x_2x+\frac{1}{x_3}-x_1x_2x_3$ — уравнение CC_1 . Аналогично, $y=x_2x_3x+\frac{1}{x_1}-x_1x_2x_3$ — уравнение AA_1 . Объединив последние два уравнения в систему и решив ее, найдем координаты точки $H: x=-\frac{1}{x_1x_2x_3}, y=-x_1x_2x_3$. Итак, $y=\frac{1}{x}$, поэтому точка H лежит на гиперболе.

ТРИСЕКЦИЯ УГЛА

Теперь у нас есть все необходимое для обоснования нашего способа трисекции. Будем в дальнейшем называть диаметром гиперболы $y=\frac{1}{x}$ ее хорду, проходящую через начало координат (диаметром гиперболы чаще называют прямую, на которой лежат середины параллельных хорд). Рассмотрим все треугольники ABC, основание AC которых является фиксированным диаметром гиперболы, а вершина B лежит на гиперболе (puc. 7).



Высоты BD этих треугольников параллельны как перпендикуляры к одной и той же прямой AC. По свойству 2 точки пересечения высот BD с гиперболой совпадают с ортоцентрами H треугольников ABC, а по свойству 1 середины E параллельных хорд BH лежат на прямой, проходящей через точку O. Таким образом, величина угла OED остается постоянной для всех таких треугольников ABC, но

как было показано ранее, $\angle OED = C - A$, поэтому стороны треугольников Морлея всех рассматриваемых треугольников АВС соответственно параллельны, а направления их морлеевских осей постоянны. Эти направления легко найти, воспользовавшись тем, что высота равнобедренного треугольника, проведенная к его основанию, является частью его морлеевской оси. Итак, проведем из точки A как из центра окружность радиусом AC и обозначим вторую точку пересечения этой окружности с ветвью BC гиперболы через C. Тогда высота AK треугольника АСС' задает направление одной из морлеевских осей треугольников АВС. Два других получаем из AK поворотом на 120° . Так как любой угол β (0°< β <180°) можно представить в виде $\beta = k \cdot 45^{\circ} + \alpha$, где k = 0, 1, 2, 3и $0^{\circ} \le \alpha < 45^{\circ}$, то

$$\frac{\beta}{3} = k \cdot 15^{\circ} + \frac{\alpha}{3}$$

и для трисекции угла β достаточно разделить α на три равные части. Опишем способ трисекции угла α , где $0^{\circ} < \alpha < 45^{\circ}$.

Проведем диаметр AC под углом $45^{\circ}-\alpha$ к положительному направлению оси Ox. На отрезке AC как на диаметре построим полуокружность, которая пересечет гиперболу в точке B так, как показано на puc. 8.

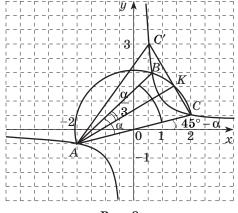


Рис. 8

Далее построим равнобедренный треугольник ACC' (AC = AC'), вписанный в гиперболу, и проведем его высоту AK (для этого достаточно соединить точку A с точкой K пересечения полуокружности и отрезка CC').

Тогда

$$\angle BAC = \alpha$$
, $\angle BAK = \frac{\alpha}{3}$.

В самом деле, прямая AK является морлеевской осью всех вписанных в гиперболу треугольников ABC, основание AC которых совпадает с диаметром AC этой гиперболы, а так как треугольник АВС — прямоугольный, то луч AK является трисектрисой угла BAC. Осталось обосновать лишь то, что $\angle BAC = \alpha$. Легко доказать, что отрезок касательной к гиперболе, заключенный между осями координат, делится точкой касания пополам. Для прямоугольного треугольника АВС (рис. 9) касательная к гиперболе в точке В перпендикулярна AC, поэтому

$$\angle OMN = \angle CON = 45^{\circ} - \alpha$$

как углы со взаимно перпендикулярными сторонами.

Поскольку точка B — середина MN, a $\angle MON = 90^{\circ}$, to

 $\angle MOB = \angle OMB = 45^{\circ} - \alpha$ и $\angle OBN = 90^{\circ} - 2\alpha$ как внешний угол треугольника ОВМ, но

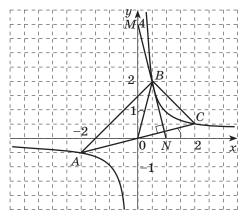


Рис. 9

 $\angle OBN = \angle BCA - \angle BAC$ и $\angle BCA + \angle BAC = 90^{\circ}$, откуда

$$\angle BAC = 90^{\circ} - \angle BCA - 90^{\circ} + 2\alpha$$
.

то есть $\angle BAC = \alpha$, что и требовалось доказать.

Литература

- 1. Коксетер Γ ., Γ рейтиер C. Новые встречи с геометрией. — М.: Наука, 1978.
- 2. Скопец З. А. Геометрические миниатюры. М.: Просвещение, 1990.

Видавнича група «Основа» рекомендує

TEMATUKA

Мій конспект

Математика

5 клас

I семестр — Код: 20ПМ43, 136 с. II семестр — Код: 20ПМ46, 160 с. 6 клас

I семестр — Код: 20ПМ42, 136 с. II семестр - Код: 20ПМ47, 160 с.

> шна 24,50

укр. мова, формат А4, м'яка ламінована обкладинка, перфорація, місця для записів

Алгебра

7 клас — Код: 20ПМ35, 176 с.

8 клас — Код: 20ПМ33, 144 с.

9 клас — Код: 20ПМ37, 144 с.

шна 24.50

10 клас. Академічний

рівень — Код: 20ПМ55, 144 с. 10 клас. Рівень стандарту – Код: 20ПМ52, 112 с.

шна 29.50

11 клас. Академічний рівень I семестр — Код: 20ПМ61, 96 с.

II семестр — Код: 20ПМ66, 120 с.

Рівень стандарту — Код: 20ПМ67, 112 с. шна 24.50

- Замовляйте зараз:
- за адресою: **ВГ** «**Основа**», вул. Плеханівська, 66, м. Харків, 61001;
- на сайті http://book.osnova.com.ua;
- за e-mail: pochta2@osnova.com.ua;
- за ICQ: 551156379;
- за SMS, надісланим на номер

Мінімальне

Вартість поштової доставки - 7,45 грн.

на планування й оформлення!

Заощаджуйте час