Construction of Circles Through Intercepts of Parallels to Cevians

Jean-Pierre Ehrmann, Francisco Javier García Capitán, and Alexei Myakishev

Abstract

From the traces of the cevians of a point in the plane of a given triangle, construct parallels to the cevians to intersect the sidelines at six points. We determine the points for which these six intersections are concyclic.

Given a point P in the plane of triangle $A B C$, with cevian triangle $X Y Z$, construct parallels through X, Y, Z to the cevians to intersect the sidelines at the following points.

Point	Intersection of	with the parallel to	through	Coordinates
B_{a}	$C A$	$C Z$	X	$(-u: 0: u+v+w)$
C_{a}	$A B$	$B Y$	X	$(-u: u+v+w: 0)$
C_{b}	$A B$	$A X$	Y	$(u+v+w:-v: 0)$
A_{b}	$B C$	$C Z$	Y	$(0:-v: u+v+w)$
A_{c}	$B C$	$B Y$	Z	$(0: u+v+w:-w)$
B_{c}	$C A$	$A X$	Z	$(u+v+w: 0:-w)$

A simple application of Carnot's theorem shows that these six points lie on a conic $\mathcal{C}(P)$ (see Figure 1). In this note we inquire the possibility for this conic to be a circle, and give a complete answer. We work with homogeneous barycentric coordinates with reference to triangle $A B C$. Suppose the given point P has coordinates $(u: v: w)$. The coordinates of the six points are given in the rightmost column of the table above. It is easy to verify that these points are all on the conic

$$
\begin{align*}
& u(u+v)(u+w) y z+v(v+w)(v+u) z x+w(w+u)(w+v) x y \\
& +(u+v+w)(x+y+z)(v w x+w u y+u v z)=0 . \tag{1}
\end{align*}
$$

Proposition 1. The conic $\mathcal{C}(P)$ through the six points is a circle if and only if

$$
\begin{equation*}
\frac{u}{v+w}: \frac{v}{w+u}: \frac{w}{u+v}=a^{2}: b^{2}: c^{2} . \tag{2}
\end{equation*}
$$

Proof. Note that the lines $B_{a} C_{a}, C_{b} A_{b}, A_{c} B_{c}$ are parallel to the sidelines of $A B C$. These three lines bound a triangle homothetic to $A B C$ at the point

$$
\left(\frac{u}{v+w}: \frac{v}{w+u}: \frac{w}{u+v}\right)
$$

Figure 1.
It is known (see, for example, $[2, \S 2]$) that the hexagon $B_{a} C_{a} A_{c} B_{c} C_{b} A_{b}$ is a Tucker hexagon, i.e., $B_{c} C_{b}, C_{a} A_{c}, A_{b} B_{a}$ are antiparallels and the conic through the six points is a circle, if and only if this homothetic center is the symmedian point $K=\left(a^{2}: b^{2}: c^{2}\right)$. Hence the result follows.

Corollary 2. IfC (P) is a circle, then it is a Tucker circle with center on the Brocard axis (joining the circumcenter and the symmedian point).

Proposition 3. If $A B C$ is a scalene triangle, there are three distinct real points P for which the conic $\mathcal{C}(P)$ is a circle.

Proof. Writing

$$
\begin{equation*}
\frac{u}{v+w}=\frac{a^{2}}{t}, \quad \frac{v}{w+u}=\frac{b^{2}}{t}, \quad \frac{w}{u+v}=\frac{c^{2}}{t}, \tag{3}
\end{equation*}
$$

we have

$$
\begin{aligned}
-t u+a^{2} v+a^{2} w & =0 \\
b^{2} u-t v+b^{2} w & =0 \\
c^{2} u+c^{2} v-t w & =0
\end{aligned}
$$

Hence,

$$
\left|\begin{array}{ccc}
-t & a^{2} & a^{2} \\
b^{2} & -t & b^{2} \\
c^{2} & c^{2} & -t
\end{array}\right|=0,
$$

or

$$
\begin{equation*}
F(t):=-t^{3}+\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) t+2 a^{2} b^{2} c^{2}=0 . \tag{4}
\end{equation*}
$$

Note that $F(0)>0$ and $F(+\infty)=-\infty$. Furthermore, assuming $a>b>c$, we easily note that

$$
F\left(-a^{2}\right)>0, \quad F\left(-b^{2}\right)<0, \quad F\left(-c^{2}\right)>0 .
$$

Therefore, F has one positive and two negative roots.
Theorem 4. For a scalene triangle $A B C$ with $\rho=\frac{2}{\sqrt{3}} \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}$ and $\theta_{0}:=\frac{1}{3} \arccos \frac{8 a^{2} b^{2} c^{2}}{\rho^{3}}$, the three points for which the corresponding conics \mathcal{P} are circle are
$P_{k}=\left(\frac{a^{2}}{a^{2}+\rho \cos \left(\theta_{0}+\frac{2 k \pi}{3}\right)}: \frac{b^{2}}{b^{2}+\rho \cos \left(\theta_{0}+\frac{2 k \pi}{3}\right)}: \frac{c^{2}}{c^{2}+\rho \cos \left(\theta_{0}+\frac{2 k \pi}{3}\right)}\right)$
for $k=0, \pm 1$.
Proof. From (3) the coordinates of P are

$$
u: v: w=\frac{a^{2}}{a^{2}+t}: \frac{b^{2}}{b^{2}+t}: \frac{c^{2}}{c^{2}+t},
$$

with t a real root of the cubic equation (4). Writing $t=\rho \cos \theta$ we transform (4) into

$$
\frac{1}{4} \rho^{3}\left(4 \cos ^{3} \theta-\frac{4\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)}{\rho^{2}} \cos \theta\right)=2 a^{2} b^{2} c^{2} .
$$

If $\rho=\frac{2}{\sqrt{3}} \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}$, this can be further reduced to

$$
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta=\frac{8 a^{2} b^{2} c^{2}}{\rho^{3}} .
$$

The three real roots of (4) $t_{k}=\rho \cos \left(\theta_{0}+\frac{2 k \pi}{3}\right)$ for $k=0, \pm 1$.

Remarks. (1) If the triangle is equilateral, the roots of the cubic equation (4) are $t=-a^{2},-a^{2}, \frac{a^{2}}{2}$.
(2) If the triangle is isosceles at A (but not equilateral), we have two solutions P_{1}, P_{2} on the line $A G$. The third one degenerates into the infinite point of $B C$. The two finite points can be constructed as follows. Let the tangent at B to the circumcircle intersects $A C$ at U, and T be the projection of U on $A G, A W=$ $\frac{3}{2} \cdot A T$. The circle centered at W and orthogonal to the circle $G(A)$ intersects $A G$ at P_{1} and P_{2}.

Henceforth, we shall assume triangle $A B C$ scalene.
Proposition 5. The conic $\mathcal{C}(P)$ is a circle if and only if P is an intersection, apart from the centroid G, of
(i) the rectangular hyperbola through G and the incenter I and their anticevian triangles,
(ii) the circum-hyperbola through G and the symmedian point K.

Figure 2

Proof. From (2), we have

$$
\begin{align*}
& f:=c^{2} v(u+v)-b^{2} w(w+u)=0, \tag{5}\\
& g:=a^{2} w(v+w)-c^{2} u(u+v)=0, \tag{6}\\
& h:=b^{2} u(w+u)-a^{2} v(v+w)=0 . \tag{7}
\end{align*}
$$

From these,

$$
0=f+g+h=\left(b^{2}-c^{2}\right) u^{2}+\left(c^{2}-a^{2}\right) v^{2}+\left(a^{2}-b^{2}\right) w^{2}
$$

This is the conic through the centroid $G=(1: 1: 1)$, the incenter $I=(a: b: c)$, and the vertices of their anticevian triangles.

Also, from (5)-(7),

$$
0=a^{2} f+b^{2} g+c^{2} h=a^{2}\left(b^{2}-c^{2}\right) v w+b^{2}\left(c^{2}-a^{2}\right) w u+c^{2}\left(a^{2}-b^{2}\right) u v=0
$$

This shows that the point P also lies on the circumconic through G and the symmedian point $K=\left(a^{2}: b^{2}: c^{2}\right)$.

If P is the centroid, the conic through the six points has equation

$$
4(y z+z x+x y)+3(x+y+z)^{2}=0
$$

This is homothetic to the Steiner circum-ellipse and is not a circle since the triangle is scalene. Therefore, if $\mathcal{C}(P)$ is a circle, P is an intersection of the two conics above, apart from the centroid G.

Remark. The positive root corresponds to the intersection which lies on the arc $G K$ of the circum-hyperbola through these two points.

Figure 3.

Proposition 6. The three real points P for which $\mathcal{C}(P)$ is a Tucker circle lie on a circle containing the following triangle centers: (i) the Euler reflection point

$$
X_{110}=\left(\frac{a^{2}}{b^{2}-c^{2}}: \frac{b^{2}}{c^{2}-a^{2}}: \frac{c^{2}}{a^{2}-b^{2}}\right)
$$

(ii) the Parry point

$$
X_{111}=\left(\frac{a^{2}}{b^{2}+c^{2}-2 a^{2}}: \frac{b^{2}}{c^{2}+a^{2}-2 b^{2}}: \frac{c^{2}}{a^{2}+b^{2}-2 c^{2}}\right)
$$

(iii) the Tarry point of the superior triangle X_{147},
(iv) the Steiner point of the superior triangle X_{148}.

Proof. The combination

$$
\begin{equation*}
a^{2}\left(c^{2}-a^{2}\right)\left(a^{2}-b^{2}\right) f+b^{2}\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right) g+c^{2}\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right) h \tag{8}
\end{equation*}
$$

of (5)-(7) (with x, y, z replacing u, v, w) yields the circle through the three points:

$$
\begin{align*}
& \left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)\left(a^{2} y z+b^{2} z x+c^{2} x y\right) \\
+ & (x+y+z)\left(\sum_{\text {cyclic }} b^{2} c^{2}\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}-2 a^{2}\right) x\right)=0 . \tag{9}
\end{align*}
$$

Since the line

$$
\sum_{\text {cyclic }} b^{2} c^{2}\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}-2 a^{2}\right) x=0
$$

contains the Euler reflection point and the Parry point, as is easily verified, so does the circle (9).

If we replace in (5)-(7) u, v, w by $y+z-x, z+x-y, x+y-z$ respectively, the combination (8) yields the circle

$$
\begin{align*}
& 2\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)\left(a^{2} y z+b^{2} z x+c^{2} x y\right) \\
- & (x+y+z)\left(\sum_{\text {cyclic }} a^{2}\left(b^{2}-c^{2}\right)\left(b^{4}+c^{4}-a^{2}\left(b^{2}+c^{2}\right)\right) x\right)=0, \tag{10}
\end{align*}
$$

which is the inferior of the circle (9). Since the line

$$
\sum_{\text {cyclic }} a^{2}\left(b^{2}-c^{2}\right)\left(b^{4}+c^{4}-a^{2}\left(b^{2}+c^{2}\right)\right) x=0
$$

clearly contains the Tarry point

$$
\left(\frac{1}{b^{4}+c^{4}-a^{2}\left(b^{2}+c^{2}\right)}: \frac{1}{c^{4}+a^{4}-b^{2}\left(c^{2}+a^{2}\right)}: \frac{1}{a^{4}+b^{4}-c^{2}\left(a^{2}+b^{2}\right)}\right)
$$

and the Steiner point

$$
\left(\frac{1}{b^{2}-c^{2}}: \frac{1}{c^{2}-a^{2}}: \frac{1}{a^{2}-b^{2}}\right),
$$

so does the circle (10). It follows that the circle (9) contains these two points of the superior triangle.

Remark. (1) The triangle center X_{147} also lies on the hyperbola through the hyperbola in Proposition 5(i).
(2) The Parry point X_{111} also lies on the circum-hyperbola through G and K (in Proposition 5(ii)). It is the isogonal conjugate of the infinite point of the line $G K$.

We conclude this note by briefly considering a conic companion to $\mathcal{C}(P)$.
With the same parallel lines through the traces of P on the sidelines, consider the intersections

Point	Intersection of	with the parallel to	through	Coordinates
B_{a}^{\prime}	$C A$	$B Y$	X	$(u v: 0: w(u+v+w))$
C_{a}^{\prime}	$A B$	$C Z$	X	$(w u: v(u+v+w): 0)$
C_{b}^{\prime}	$A B$	$C Z$	Y	$(u(u+v+w): v w: 0)$
A_{b}^{\prime}	$B C$	$A X$	Y	$(0: u v: w(u+v+w))$
A_{c}^{\prime}	$B C$	$A X$	Z	$(0: v(u+v+w): u w)$
B_{c}^{\prime}	$C A$	$B Y$	Z	$(u(u+v+w): 0: v w)$

These six points also lie on a conic $\mathcal{C}^{\prime}(P)$, which has equation

$$
(u+v)(v+w)(w+u) \sum_{\text {cyclic }} u(v+w) y z-(u+v+w)(x+y+z) \sum_{\text {cyclic }} v^{2} w^{2} x=0 .
$$

Figure 4.
In this case, the lines $B_{c}^{\prime} C_{b}^{\prime}, C_{a}^{\prime} A_{c}^{\prime}, A_{b}^{\prime} B_{a}^{\prime}$ are parallel to the sidelines, and bound a triangle homothetic to $A B C$ at the point

$$
(u(v+w): v(w+u): w(u+v)),
$$

which is the inferior of the isotomic conjugate of P. The lines $B_{a}^{\prime} C_{a}^{\prime}, C_{b}^{\prime} A_{b}^{\prime}, A_{c}^{\prime} B_{c}^{\prime}$ are antiparallels if and only if the homothetic center is the symmedian point. Therefore, the conic $\mathcal{C}^{\prime}(P)$ is a circle if and only if P is the isotomic conjugate of the superior of K, namely, the orthocenter H. The resulting circle is the Taylor circle.

References

[1] C. Kimberling, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[2] F. M. van Lamoen, Some concurrencies from Tucker hexagons, Forum Geom., 2 (2002) 5-13.
[3] A. Miyakishev, Hyacinthos message 20416, November 24, 2011.
Jean-Pierre Ehrmann: 6, rue des Cailloux, 92110 - Clichy, France
E-mail address: Jean-Pierre.EHRMANN@wanadoo.fr
Francisco Javier García Capitán: Departamento de Matemáticas, I.E.S. Alvarez Cubero, Avda. Presidente Alcalá-Zamora, s/n, 14800 Priego de Córdoba, Córdoba, Spain

E-mail address: garciacapitan@gmail.com
Alexei Myakishev: Moscow, Belomorskaia-12-1-133.
E-mail address: amyakishev@yahoo.com

