

Construction of Circles Through Intercepts of Parallels to Cevians

Jean-Pierre Ehrmann, Francisco Javier García Capitán, and Alexei Myakishev

Abstract. From the traces of the cevians of a point in the plane of a given triangle, construct parallels to the cevians to intersect the sidelines at six points. We determine the points for which these six intersections are concyclic.

Given a point P in the plane of triangle ABC, with cevian triangle XYZ, construct parallels through X, Y, Z to the cevians to intersect the sidelines at the following points.

	Intersection	with the		
Point	of	parallel to	through	Coordinates
B_a	CA	CZ	X	(-u:0:u+v+w)
C_a	AB	BY	X	(-u:u+v+w:0)
C_b	AB	AX	Y	(u+v+w:-v:0)
A_b	BC	CZ	Y	(0:-v:u+v+w)
A_c	BC	BY	Z	(0:u+v+w:-w)
B_c	CA	AX	Z	(u+v+w:0:-w)

A simple application of Carnot's theorem shows that these six points lie on a conic C(P) (see Figure 1). In this note we inquire the possibility for this conic to be a circle, and give a complete answer. We work with homogeneous barycentric coordinates with reference to triangle ABC. Suppose the given point P has coordinates (u : v : w). The coordinates of the six points are given in the rightmost column of the table above. It is easy to verify that these points are all on the conic

$$u(u+v)(u+w)yz + v(v+w)(v+u)zx + w(w+u)(w+v)xy + (u+v+w)(x+y+z)(vwx+wuy+uvz) = 0.$$
 (1)

Proposition 1. The conic C(P) through the six points is a circle if and only if

$$\frac{u}{v+w}: \frac{v}{w+u}: \frac{w}{u+v} = a^2: b^2: c^2.$$
(2)

Proof. Note that the lines B_aC_a , C_bA_b , A_cB_c are parallel to the sidelines of ABC. These three lines bound a triangle homothetic to ABC at the point

$$\left(\frac{u}{v+w}: \frac{v}{w+u}: \frac{w}{u+v}\right)$$

Publication Date: December 29, 2011. Communicating Editor: Paul Yiu.

It is known (see, for example, [2, §2]) that the hexagon $B_aC_aA_cB_cC_bA_b$ is a Tucker hexagon, *i.e.*, B_cC_b , C_aA_c , A_bB_a are antiparallels and the conic through the six points is a circle, if and only if this homothetic center is the symmedian point $K = (a^2 : b^2 : c^2)$. Hence the result follows.

Corollary 2. If C(P) is a circle, then it is a Tucker circle with center on the Brocard axis (joining the circumcenter and the symmedian point).

Proposition 3. If ABC is a scalene triangle, there are three distinct real points P for which the conic C(P) is a circle.

Proof. Writing

$$\frac{u}{v+w} = \frac{a^2}{t}, \qquad \frac{v}{w+u} = \frac{b^2}{t}, \qquad \frac{w}{u+v} = \frac{c^2}{t},$$
 (3)

we have

Hence,

$$\begin{vmatrix} -t & a^2 & a^2 \\ b^2 & -t & b^2 \\ c^2 & c^2 & -t \end{vmatrix} = 0,$$

or

$$F(t) := -t^3 + (a^2b^2 + b^2c^2 + c^2a^2)t + 2a^2b^2c^2 = 0.$$
 (4)

Note that F(0) > 0 and $F(+\infty) = -\infty$. Furthermore, assuming a > b > c, we easily note that

$$F(-a^2) > 0,$$
 $F(-b^2) < 0,$ $F(-c^2) > 0.$

Therefore, F has one positive and two negative roots.

Theorem 4. For a scalene triangle ABC with $\rho = \frac{2}{\sqrt{3}}\sqrt{a^2b^2 + b^2c^2 + c^2a^2}$ and $\theta_0 := \frac{1}{3} \arccos \frac{8a^2b^2c^2}{\rho^3}$, the three points for which the corresponding conics \mathcal{P} are circle are

$$P_{k} = \left(\frac{a^{2}}{a^{2} + \rho \cos\left(\theta_{0} + \frac{2k\pi}{3}\right)} : \frac{b^{2}}{b^{2} + \rho \cos\left(\theta_{0} + \frac{2k\pi}{3}\right)} : \frac{c^{2}}{c^{2} + \rho \cos\left(\theta_{0} + \frac{2k\pi}{3}\right)}\right)$$
for $k = 0, \pm 1$

for $k = 0, \pm 1$.

Proof. From (3) the coordinates of P are

$$u: v: w = \frac{a^2}{a^2 + t}: \frac{b^2}{b^2 + t}: \frac{c^2}{c^2 + t};$$

with t a real root of the cubic equation (4). Writing $t = \rho \cos \theta$ we transform (4) into

$$\frac{1}{4}\rho^3 \left(4\cos^3\theta - \frac{4(a^2b^2 + b^2c^2 + c^2a^2)}{\rho^2}\cos\theta \right) = 2a^2b^2c^2.$$

If $\rho = \frac{2}{\sqrt{3}}\sqrt{a^2b^2 + b^2c^2 + c^2a^2}$, this can be further reduced to

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta = \frac{8a^2b^2c^2}{\rho^3}.$$

The three real roots of (4) $t_k = \rho \cos\left(\theta_0 + \frac{2k\pi}{3}\right)$ for $k = 0, \pm 1$.

Remarks. (1) If the triangle is equilateral, the roots of the cubic equation (4) are $t = -a^2, -a^2, \frac{a^2}{2}$.

(2) If the triangle is isosceles at A (but not equilateral), we have two solutions P_1 , P_2 on the line AG. The third one degenerates into the infinite point of BC. The two finite points can be constructed as follows. Let the tangent at B to the circumcircle intersects AC at U, and T be the projection of U on AG, $AW = \frac{3}{2} \cdot AT$. The circle centered at W and orthogonal to the circle G(A) intersects AG at P_1 and P_2 .

Henceforth, we shall assume triangle ABC scalene.

Proposition 5. The conic C(P) is a circle if and only if P is an intersection, apart from the centroid G, of

(i) the rectangular hyperbola through G and the incenter I and their anticevian triangles,

(ii) the circum-hyperbola through G and the symmedian point K.

Figure 2

Proof. From (2), we have

$$f := c^2 v(u+v) - b^2 w(w+u) = 0,$$
(5)

$$g := a^2 w(v+w) - c^2 u(u+v) = 0,$$
(6)

$$h := b^2 u(w+u) - a^2 v(v+w) = 0.$$
(7)

From these,

$$0 = f + g + h = (b^{2} - c^{2})u^{2} + (c^{2} - a^{2})v^{2} + (a^{2} - b^{2})w^{2}.$$

This is the conic through the centroid G = (1 : 1 : 1), the incenter I = (a : b : c), and the vertices of their anticevian triangles.

Also, from (5)–(7),

$$0 = a^{2}f + b^{2}g + c^{2}h = a^{2}(b^{2} - c^{2})vw + b^{2}(c^{2} - a^{2})wu + c^{2}(a^{2} - b^{2})uv = 0.$$

This shows that the point P also lies on the circumconic through G and the symmetry median point $K = (a^2 : b^2 : c^2)$.

If P is the centroid, the conic through the six points has equation

$$4(yz + zx + xy) + 3(x + y + z)^{2} = 0.$$

This is homothetic to the Steiner circum-ellipse and is not a circle since the triangle is scalene. Therefore, if C(P) is a circle, P is an intersection of the two conics above, apart from the centroid G.

Remark. The positive root corresponds to the intersection which lies on the arc GK of the circum-hyperbola through these two points.

Figure 3.

Proposition 6. The three real points P for which C(P) is a Tucker circle lie on a circle containing the following triangle centers: (i) the Euler reflection point

$$X_{110} = \left(\frac{a^2}{b^2 - c^2} : \frac{b^2}{c^2 - a^2} : \frac{c^2}{a^2 - b^2}\right),$$

(ii) the Parry point

$$X_{111} = \left(\frac{a^2}{b^2 + c^2 - 2a^2} : \frac{b^2}{c^2 + a^2 - 2b^2} : \frac{c^2}{a^2 + b^2 - 2c^2}\right),$$

(iii) the Tarry point of the superior triangle X_{147} , (iv) the Steiner point of the superior triangle X_{148} .

Proof. The combination

$$a^{2}(c^{2}-a^{2})(a^{2}-b^{2})f + b^{2}(a^{2}-b^{2})(b^{2}-c^{2})g + c^{2}(b^{2}-c^{2})(c^{2}-a^{2})h$$
(8)

of (5)–(7) (with x, y, z replacing u, v, w) yields the circle through the three points:

$$(a^{2} - b^{2})(b^{2} - c^{2})(c^{2} - a^{2})(a^{2}yz + b^{2}zx + c^{2}xy) + (x + y + z)\left(\sum_{\text{cyclic}} b^{2}c^{2}(b^{2} - c^{2})(b^{2} + c^{2} - 2a^{2})x\right) = 0.$$
(9)

Since the line

$$\sum_{\text{cyclic}} b^2 c^2 (b^2 - c^2) (b^2 + c^2 - 2a^2) x = 0$$

contains the Euler reflection point and the Parry point, as is easily verified, so does the circle (9).

If we replace in (5)–(7) u, v, w by y + z - x, z + x - y, x + y - z respectively, the combination (8) yields the circle

$$2(a^{2} - b^{2})(b^{2} - c^{2})(c^{2} - a^{2})(a^{2}yz + b^{2}zx + c^{2}xy) - (x + y + z)\left(\sum_{\text{cyclic}} a^{2}(b^{2} - c^{2})(b^{4} + c^{4} - a^{2}(b^{2} + c^{2}))x\right) = 0, \quad (10)$$

which is the inferior of the circle (9). Since the line

$$\sum_{\text{cyclic}} a^2 (b^2 - c^2) (b^4 + c^4 - a^2 (b^2 + c^2)) x = 0$$

clearly contains the Tarry point

$$\left(\frac{1}{b^4 + c^4 - a^2(b^2 + c^2)}: \frac{1}{c^4 + a^4 - b^2(c^2 + a^2)}: \frac{1}{a^4 + b^4 - c^2(a^2 + b^2)}\right),$$

and the Steiner point

$$\left(\frac{1}{b^2 - c^2} : \frac{1}{c^2 - a^2} : \frac{1}{a^2 - b^2}\right),$$

so does the circle (10). It follows that the circle (9) contains these two points of the superior triangle. $\hfill\square$

Remark. (1) The triangle center X_{147} also lies on the hyperbola through the hyperbola in Proposition 5(i).

(2) The Parry point X_{111} also lies on the circum-hyperbola through G and K (in Proposition 5(ii)). It is the isogonal conjugate of the infinite point of the line GK.

We conclude this note by briefly considering a conic companion to C(P).

With the same parallel lines through the traces of P on the sidelines, consider the intersections

	Intersection	with the		
Point	of	parallel to	through	Coordinates
B'_a	CA	BY	X	(uv:0:w(u+v+w))
C'_a	AB	CZ	X	(wu:v(u+v+w):0)
C'_b	AB	CZ	Y	(u(u+v+w):vw:0)
$A_b^{\check{\prime}}$	BC	AX	Y	(0:uv:w(u+v+w))
A_c^{\prime}	BC	AX	Z	(0:v(u+v+w):uw)
B'_c	CA	BY	Z	(u(u+v+w):0:vw)

These six points also lie on a conic $\mathcal{C}'(P)$, which has equation

$$(u+v)(v+w)(w+u)\sum_{\text{cyclic}} u(v+w)yz - (u+v+w)(x+y+z)\sum_{\text{cyclic}} v^2w^2x = 0.$$

Figure 4.

In this case, the lines $B'_cC'_b$, $C'_aA'_c$, $A'_bB'_a$ are parallel to the sidelines, and bound a triangle homothetic to ABC at the point

$$(u(v+w): v(w+u): w(u+v)),$$

which is the inferior of the isotomic conjugate of P. The lines $B'_a C'_a, C'_b A'_b, A'_c B'_c$ are antiparallels if and only if the homothetic center is the symmedian point. Therefore, the conic C'(P) is a circle if and only if P is the isotomic conjugate of the superior of K, namely, the orthocenter H. The resulting circle is the Taylor circle.

References

- [1] C. Kimberling, *Encyclopedia of Triangle Centers*, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
- [2] F. M. van Lamoen, Some concurrencies from Tucker hexagons, Forum Geom., 2 (2002) 5-13.
- [3] A. Miyakishev, Hyacinthos message 20416, November 24, 2011.

Jean-Pierre Ehrmann: 6, rue des Cailloux, 92110 - Clichy, France *E-mail address*: Jean-Pierre.EHRMANN@wanadoo.fr

Francisco Javier García Capitán: Departamento de Matemáticas, I.E.S. Alvarez Cubero, Avda. Presidente Alcalá-Zamora, s/n, 14800 Priego de Córdoba, Córdoba, Spain *E-mail address*: garciacapitan@gmail.com

Alexei Myakishev: Moscow, Belomorskaia-12-1-133. *E-mail address*: amyakishev@yahoo.com